Утвержден 5К1.550.151 РЭ-ЛУ ГОСРЕЕСТР 24291-03

# ГИГРОМЕТР

# БАЙКАЛ-2ВМ

Руководство по эксплуатации 5К1.550.151 РЭ-ЛУ







# Содержание

| 1.  | Описание и работа гигрометра                      | 3  |
|-----|---------------------------------------------------|----|
|     | 1.1. Назначение гигрометра                        | 3  |
|     | 1.2. Технические характеристики                   | 5  |
|     | 1.3. Состав гигрометра и комплектность            | 7  |
|     | 1.4. Устройство и работа                          | 10 |
|     | 1.5. Маркировка и пломбирование                   |    |
|     | 1.6. Упаковка                                     | 16 |
| 2.  | Использование по назначению                       |    |
|     | 2.1. Эксплуатационные ограничения                 | 16 |
|     | 2.2. Подготовка гигрометра к работе               |    |
|     | 2.3. Использование гигрометра                     | 23 |
| 3.  | Техническое обслуживание гигрометра               | 24 |
|     | 3.1. Общие указания                               | 24 |
|     | 3.2. Меры безопасности                            | 24 |
|     | 3.3. Порядок технического обслуживания гигрометра | 25 |
| 4.  | Текущий ремонт гигрометра                         | 25 |
| 5.  | Транспортирование и хранение                      | 27 |
| 6.  | Методика поверки                                  |    |
| 7.  | Гарантии изготовителя                             |    |
| 8.  | Сведения о рекламациях                            |    |
| 9.  | Сведения о поверке (калибровке)                   | 39 |
| 10. | Свидетельство о приемке                           | 40 |
|     | Свидетельство об упаковывании                     |    |
|     | іложение А                                        |    |
| При | іложение Б                                        | 45 |
|     | іложение В                                        |    |
| При | іложение Д                                        | 47 |
| При | іложение E                                        | 49 |

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, работой и правилами обслуживания гигрометров БАЙКАЛ-2ВМ.

К работе с гигрометром допускаются лица, имеющие квалификацию слесаря КИПиА не ниже 4 разряда, ознакомившиеся с настоящим руководством по эксплуатации.

#### 1. Описание и работа гигрометра

### 1.1. Назначение гигрометра

Гигрометр БАЙКАЛ-2ВМ 1.1.1. гигрометр) дальнейшем собой непрерывно представляет автоматический показывающий действующий прибор, предназначенный для измерения объемной доли влаги (далее ОДВ) в азоте, кислороде, воздухе, углекислом газе, водороде, метане, инертных других газах ИХ смесях, И И взаимодействующих с фосфорным ангидридом.

Гигрометр может использоваться в технологических производствах связанных с контролем влажности газов, а также в лабораториях для научных исследований.

По эксплуатационной законченности гигрометр относится к изделиям третьего порядка по ГОСТ 12997-84 и состоит из блока измерений и датчика со встроенной оболочкой 5К5.887.121.

По защищенности от воздействия окружающей среды блок измерений и датчик гигрометра имеют исполнение, защищенное от попадания внутрь твердых тел (степень защиты IP20 по ГОСТ 14254-96).

Гигрометр не является источником загрязнений для окружающей среды и безопасен для жизни и здоровья людей.

5K5.887.121 датчика гигрометра Оболочка имеет маркировку 1ExdIICT3 X. Датчик со встроенной оболочкой 5K5.887.121 применяться во взрывоопасных зонах помещений классов 1 и 2 по классификации ГОСТ Р 51330.9-99 и зонах классов В-1а, В-1б по классификации гл. 7.3 ПУЭ, образовываться В которых МОГУТ взрывоопасные смеси газов или паров с воздухом категорий IIA, IIB, IIC по ГОСТ Р 51330.11-99 групп Т1, Т2, Т3 по ГОСТ Р 51330.5-99.

Правила применения датчиков со встроенной оболочкой 5К5.887.121 во взрывоопасных зонах - в соответствии с требованиями ГОСТ Р 51330.13-99, гл. 7.3 ПУЭ, настоящего руководства по эксплуатации с обязательным выполнением особых условий безопасной эксплуатации, обусловленной знаком «Х» в маркировке взрывозащиты и указанных в п. 2.1.1.

Оболочка 5К5.887.121 датчика имеет исполнение, защищенное от проникновения пыли и от сплошного разбрызгивания степень защиты IP54 по ГОСТ 14254-96.

Датчик гигрометра со встроенной оболочкой 5К5.887.121, побудитель расхода газа эжекторного типа, могут устанавливаться во взрывоопасных зонах класса В-1а по ПУЭ, в которых возможно образование взрывоопасных газовых смесей.

Блок измерений гигрометра общего назначения должен устанавливаться за пределами взрывоопасных зон.

- 1.1.2 Нормальные условия применения гигрометра:
- температура анализируемого газа и окружающего воздуха плюс (20±5) °C;
- атмосферное давление от 94,5 до 104,6 кПа (от 710 до 785 мм рт. ст.);
- относительная влажность окружающего воздуха не более 80 %;
- электрическое напряжение питания от 187 до 242 В частотой от 49 до 51 Гц;
- отклонение входного давления анализируемого газа от давления настройки не более ±6 %.
  - 1.1.3. Рабочие условия применения гигрометра:
- температура анализируемого газа и окружающего воздуха от плюс 5 до плюс 50°С;
- атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);
- относительная влажность окружающего воздуха 80 % при температуре плюс 35°C и более низких температурах без конденсации влаги;
- входное давление газа в пределах, указанных в данном руководстве. Остальные параметры соответствуют нормальным условиям применения.
- 1.1.4. Гигрометр выполнен в климатическом исполнении УХЛ категории размещения 4 по ГОСТ 15150-69.
- 1.1.5. Анализируемые газы по своему составу должны соответствовать требованиям действующих на них стандартов и не содержать примесей, вызывающих коррозию стали 12X18H10T ГОСТ 5632-72, щелочных примесей и примесей, реагирующих с фосфорным ангидридом.
- 1.1.6. Гигрометр, в зависимости от входного давления анализируемого газа, изготавливают в исполнениях, указанных в таблице 1.

Таблица 1.

| Наименование и<br>исполнение гигрометра     | Обозначение<br>исполнения | Избыточное давление анализируемого газа МПа (кгс/см²)      |  |
|---------------------------------------------|---------------------------|------------------------------------------------------------|--|
| Байкал-2ВМ с датчиком на высокое давление   | 5K1.550.151               | от 0,16 до 40<br>(от 1,6 до 400)                           |  |
| Байкал-2ВМ с датчиком<br>на низкое давление | 5K1.550.151-01            | от 0,03 до 0,16<br>(от 0,3 до 1,6)                         |  |
| Байкал-2ВМ с датчиком<br>на разрежение      | 5K1.550.151-02            | от минус 0,005 до плюс 0,03<br>(от минус 0,05 до плюс 0,3) |  |

## 1.2. Технические характеристики

- 1.2.1. Отсчетное устройство гигрометра имеет четыре десятичных разряда. Цена единицы наименьшего разряда отсчетного устройства гигрометра должна быть:
  - 0,001 млн<sup>-1</sup> для диапазона измеряемой ОДВ 0-1 млн<sup>-1</sup>;
  - 0,01 млн<sup>-1</sup> для диапазона измеряемой ОДВ 1-10 млн<sup>-1</sup>;
  - 0,1 млн<sup>-</sup>1 для диапазона измеряемой ОДВ 10-100 млн<sup>-</sup>1;
  - 1 млн<sup>-1</sup> для диапазона измеряемой ОДВ 100-1000 млн<sup>-1</sup>.
- 1.2.2. Номинальный расход анализируемого газа через чувствительный элемент при температуре окружающего воздуха плюс 20°С и атмосферном давлении 101,3 кПа (760 мм рт. ст.) 100 см<sup>3</sup>/мин.

Расход анализируемого газа через гигрометр не более 1000 см<sup>3</sup>/мин.

- 1.2.3. Давление сжатого воздуха на входе «ВХОД ВОЗДУХА» побудителя расхода газа от 250 до 800 кПа (2,5-8 кгс/см²).
- 1.2.4. Гигрометр имеет устройство сигнализации в виде сигнальной лампы о перегрузке по влажности анализируемого газа, срабатывающее при ОДВ более 1000 млн<sup>-1</sup>.
- 1.2.5. Гигрометр имеет устройство сигнализации в виде сигнальной лампы о неисправности чувствительного элемента.
- 1.2.6. Гигрометр имеет устройство для задания индексов сигнализации в диапазонах 1-10, 10-100, 100-1000 млн $^{-1}$ .
- 1.2.7. Гигрометр имеет устройство сигнализации о превышении в анализируемом газе заданного значения ОДВ в диапазонах 1-10, 10-100, 100-1000 млн<sup>-1</sup> в виде сигнальной лампы и «сухих» контактов электромагнитного реле. Допустимый ток через контакты реле не должен быть более 0,5 А при максимальном напряжении 30 В.
- 1.2.8. Погрешность срабатывания устройства сигнализации о достижении в анализируемом газе заданного значения ОДВ не более  $\pm 5\%$ .
- 1.2.9. Электрическая мощность, потребляемая гигрометром, не превышает 27 Вт.
- 1.2.10. Габаритные размеры и масса составных частей гигрометра указаны в таблице 2.

Таблица 2.

| Наименование<br>гигрометра                   | Наименование<br>составных частей<br>гигрометра         | Габаритные<br>размеры, мм                 | Масса,<br>кг |  |
|----------------------------------------------|--------------------------------------------------------|-------------------------------------------|--------------|--|
| Байкал-2ВМ:                                  |                                                        | 240×145×355<br>240×145×320                | 6 4          |  |
| Байкал-2ВМ:<br>● с датчиком<br>на разрежение | Датчик<br>Блок измерений<br>Побудитель расхода<br>газа | 240×145×355<br>240×145×320<br>230×170×130 | 6<br>4<br>4  |  |

- 1.2.11. Гигрометр имеет четыре диапазона измерений ОДВ, 0-1, 1-10, 10-100, 100-1000 млн<sup>-1</sup>.
- 1.2.12. Гигрометр имеет унифицированный выходной сигнал 0-5 мА или 4-20 мА для каждого диапазона.

Номинальная статическая характеристика преобразования в унифицированный выходной сигнал выражается формулой:

• для выходного сигнала 0-5 мА:

$$B_{\text{Bbix}} = \frac{I_{\text{Bbix}}}{5} \cdot B_{\text{H}} \tag{1}$$

• для выходного сигнала 4-20 мА:

$$B_{\text{вых}} = \frac{I_{\text{вых}} - 4}{16} \cdot B_{\text{H}}$$
 (2)

где B<sub>вых</sub> – объемная доля влаги, млн<sup>-1</sup>;

Івых – значение выходного унифицированного сигнала, мА;

В<sub>н</sub> – верхний предел диапазона измерений, 1, 10, 100 или 1000 млн<sup>-1</sup>;

4; 5; 16 – нормирующие коэффициенты.

1. Гигрометр имеет устройство сигнализации в виде «сухих» контактов электромагнитного реле о диапазоне измерения ОДВ по унифицированному выходному сигналу. Допустимый ток через контакты электромагнитного реле должен быть не более 0,5 А при максимальном напряжении 30 В.

2.

- 1.2.14. Пределы допускаемой основной приведенной (к верхним пределам диапазонов измерений) погрешности по цифровому табло  $(\delta_{op}, \%)$  и выходному унифицированному сигналу  $(\delta'_{op}, \%)$  равны:
  - ±10 % для диапазона измерения 0-1 млн<sup>-1</sup>;
  - ±4 % для диапазона измерения 1-10 млн<sup>-1</sup>;
  - ±2,5 % для диапазонов измерения 10-100 млн<sup>-1</sup>, 100-1000 млн<sup>-1</sup>.
- 1.2.15. Пределы допускаемого изменения основной приведенной погрешности гигрометра за 30 сут непрерывной работы (стабильность гигрометра) на одном и том же анализируемом газе равны  $0.5 \, \delta_{op}$ .
- 1.2.16. Время установления показаний гигрометра при нормальных условиях применения не более 90, 15, 6 мин, соответственно для диапазонов измерения 0-1, 1-10, 10-100, 100-1000 млн<sup>-1</sup>.
- 1.2.17. Пределы допускаемой дополнительной приведенной погрешности ( $\delta_{tp}$ , %) гигрометра, вызванной изменением температуры окружающего воздуха на каждые 10°C от температуры плюс (20±5)°C в пределах рабочих условий применения не более ±2 %.
- 1.2.18. Пределы допускаемой дополнительной приведенной погрешности ( $\delta_{PaP}$ , %) гигрометра, вызванной изменением атмосферного давления на каждые 3,3 кПа (25 мм. рт. ст.), в диапазоне от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.) не более  $\pm 2$  %.
- 1.2.19. Пределы допускаемой дополнительной приведенной погрешности ( $\delta_{PrP}$ , %), вызванной отклонением входного давления анализируемого газа от давления настройки гигрометра, на каждые 30 % в пределах рабочих условий применения  $\pm 2$  %.
  - 1.2.20. Средний срок службы гигрометра 8 лет.

Ресурс гигрометра - 45000 ч.

- 1.2.21. Сведения о содержании драгоценных металлов:
- платина 0,4044 г;
- родий 0,1908 г.

## 1.3. Состав гигрометра и комплектность

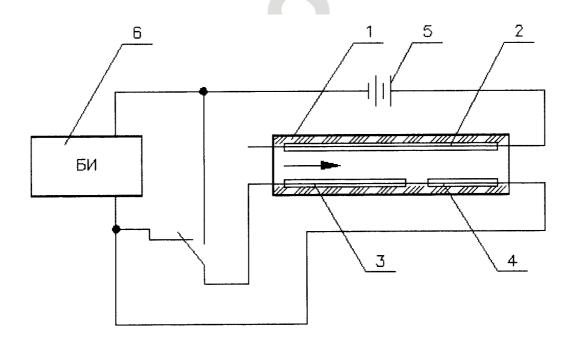
1.3.1. Комплект поставки гигрометра соответствует таблице 3.

Таблица 3.

| Наименование и исполнение гигрометра                   | Обозначение<br>исполнения | Наименование<br>составных частей<br>комплекта | Обозначени е составных частей | К-во,<br>шт. |
|--------------------------------------------------------|---------------------------|-----------------------------------------------|-------------------------------|--------------|
| Гигрометр                                              | 5K1.550.151               | Блок измерения                                | 5K2.390.130                   | 1            |
| Байкал-2BM с<br>датчиком на                            |                           | Датчик на высокое<br>давление                 | 5K2.844.122                   | 1            |
| высокое<br>давление                                    |                           | Комплект запасных частей                      | 5K4.070.251                   | 1            |
|                                                        |                           | Комплект<br>принадлежностей                   | 5K4.072.113                   | 1            |
|                                                        |                           | Комплект монтажных частей                     | 5K4.075.131                   | 1            |
|                                                        |                           | Комплект электрических схем                   | 5K4.079.041                   | 1            |
| Гигрометр                                              | 5K1.550.151-01            | Блок измерения                                | 5K2.390.130                   | 1            |
| Байкал-2BM с<br>датчиком на                            |                           | Датчик на низкое<br>давление                  | 5K2.844.123                   | 1            |
| низкое давление                                        |                           | Комплект запасных частей                      | 5K4.070.251                   | 1            |
|                                                        |                           | Комплект принадлежностей                      | 5K4.072.113                   | 1            |
|                                                        |                           | Комплект монтажных<br>частей                  | 5K4.075.131                   | 1            |
|                                                        |                           | Комплект электрических схем                   | 5K4.079.041                   | 1            |
| Гигрометр<br>Байкал-2ВМ с<br>датчиком на<br>разрежение | 5K1.550.151-02            | Блок измерения                                | 5K2.390.130                   | 1            |
| раорожопио                                             |                           | Датчик на разрежение                          | 5K2.844.124                   | 1            |
|                                                        |                           | Побудитель расхода                            | 5K5.150.135                   | 1            |
|                                                        | , 0                       | Комплект запасных<br>частей                   | 5K4.070.251                   | 1            |
|                                                        |                           | Комплект<br>принадлежностей                   | 5K4.072.114                   | 1            |
|                                                        |                           | Комплект монтажных<br>частей                  | 5K4.075.131                   | 1            |
|                                                        |                           | Комплект электрических схем                   | 5K4.079.041                   | 1            |

1.3.2. Комплект запасных и монтажных частей гигрометра соответствует таблице 4.

Таблица 4.


| Обозначение     | Наименование                                                                   | Кол-во,<br>шт. |  |
|-----------------|--------------------------------------------------------------------------------|----------------|--|
|                 | <u>Комплект запасных частей 5К4.070.251</u>                                    |                |  |
| 5K5.184.099-01  | Элемент чувствительный                                                         | 1              |  |
| 5K6.452.295-08  | Трубка                                                                         | 1              |  |
|                 | 20 % раствор ортофосфорной кислоты "ХЧ"                                        |                |  |
|                 | ГОСТ 6552-80 в дистиллированной воде 40 мл (в колбе 5K7.350.000)               | 80 мл          |  |
| 5K8.611.095     | Пластина                                                                       | 1              |  |
| 5K8.626.222     | Трубка                                                                         | 1              |  |
| 5K8.683.289-01  | Прокладка                                                                      | 6              |  |
| 5K8.684.856     | Прокладка                                                                      | 1              |  |
| H5K8.652.130    | Ниппель прижимной                                                              | 3              |  |
| H5K8.658.013    | Гайка накидная                                                                 | 1              |  |
|                 | Вставка плавкая                                                                | _              |  |
|                 | ВП1-1-0,5А АГО 481.303 ТУ                                                      | 3              |  |
|                 | Трубка 3.31 ТВ – 40.6 белая 1 сорт ГОСТ 19034-82                               | 0,05 м         |  |
|                 | Трубка ПВХ4×1,5 ТУ6-01-1196-79                                                 | 0,3 м          |  |
| T) / 0.00       | Комплект принадлежностей 5К4.072.113                                           |                |  |
| ТУ 6-82         | Устройство для измерения расхода газа УИРГ – 2А                                | 4              |  |
| 5K0.283.00 ТУ   | VONETOKE OFOREDAMONIAN OVON                                                    | 1              |  |
| 5K4. 079.041    | Комплект электрических схем Комплект принадлежностей 5К4.072.114               |                |  |
| 5K5.183.039     | ·                                                                              | 1              |  |
| 5K4. 079.041    | Устройство для измерения расхода газа УИРГ – 2Р<br>Комплект электрических схем | 1              |  |
| JN4. 07 9.04 I  |                                                                                | ı              |  |
| 5K6.354.086     | Комплект монтажных частей 5К4.075.131<br>Ключ                                  | 1              |  |
| 5K6.453.082*    | *Тройник                                                                       | 1              |  |
| 5NO.455.002     | *Трубка ПВХ4×1,5 ТУ6-01-1196-79                                                | 2 м            |  |
|                 | Вилка ОНЦ-РГ-09-4/18 В12 БР0.364.082 ТУ                                        | 1              |  |
|                 | Вилка ОНЦ-РГ-09-4/14 В12 БР0.364.082 ТУ                                        | 1              |  |
|                 | Вилка ОНЦ-РГ-09-10/22 В12 БР0.364.082 ТУ                                       | 1              |  |
|                 | Розетка ОНЦ-РГ-09-4/14-Р1 БР0.364.082 ТУ                                       | 1              |  |
| *5K6.644.022-02 | Кабель "СЕТЬ"                                                                  | 1              |  |
| *5K6.640.260    | Жгут № 1                                                                       | 1              |  |
| *5K6.640.261    | Жгут № 2                                                                       | 1              |  |
|                 | *Трубка ПВХ4×1,5 ТУ6-01-1196-79 (2м) и тройник                                 |                |  |
|                 | 5К6.453.082 для гигрометра БАЙКАЛ-2ВМ с датчиком на                            |                |  |
|                 | разрежение                                                                     |                |  |

 $<sup>^{\</sup>star}$  - Поставляется по согласованию с заказчиком и за дополнительную плату.

- 1.3.3. В комплекте с гигрометром поставляются следующие эксплуатационные документы:
  - «Гигрометр кулонометрический БАЙКАЛ-2ВМ руководство по эксплуатации 5К1.550.151» РЭ;
  - «Устройство для измерения расхода газа УИРГ. Аттестат методики выполнения измерений расхода газа» 5К0.283.000ДА;
  - «гигрометры кулонометрические. Методы регенерации чувствительных элементов. Типовые технологические процессы» СТП 5КО.054.016-02;
  - Разрешение на применение Ростехнадзора;
  - Сертификат соответствия.

### 1.4. Устройство и работа

- 1.4.1. Работа гигрометра основана на непрерывном извлечении влаги из дозируемого потока анализируемого газа высокоэффективным сорбентом и одновременном электролитическом разложении извлеченной влаги под действием постоянного напряжения на водород и кислород и измерении тока электролиза.
  - 1.4.2. Принцип действия гигрометра иллюстрируется на рисунке 1.



1 – корпус; 2 – электрод общий; 3 – электрод рабочей части чувствительного элемента; 4 - электрод контрольной части чувствительного элемента; 5 – источник питания; 6 – блок измерений.

Рисунок 1. Функциональная схема гигрометра.

В канале цилиндрического стеклянного корпуса 1 размещены родиевые электроды 2 – общий, 3 – рабочий, 4 – контрольный, выполненные в виде геликоидальных несоприкасающихся спиралей. Электроды 3 и 4 расположены последовательно друг за другом по ходу газового тракта и впечены в стекло. Между электродами нанесена пленка частично гидратированной пятиокиси фосфора  $P_2O_5$ , обладающей высокой влагосорбирующей способностью. Стеклянный корпус в сочетании с электродами образует кулонометрический чувствительный элемент.

Через чувствительный элемент в направлении, указанном стрелкой, анализируемый непрерывно проходит газ. расход поддерживается постоянным, величина которого выбрана таким образом, чтобы практически вся влага извлеклась из потока анализируемого газа пленкой пятиокиси фосфора. К электродам приложено напряжение от источника постоянного тока 5, величина которого превышает потенциал Таким образом, одновременно с непрерывным воды. разложения количественным поглощением влаги пленкой сорбирующего вещества электролитическое разложение поглощенной установившемся режиме ток электролиза, контролируемый блоком измерений, является мерой абсолютного содержания влаги в газе.

В процессе работы чувствительного элемента происходит постепенное уменьшение активной поверхности сорбирующей влагу пленки пятиокиси фосфора, что приводит к неполному извлечению влаги, а, следовательно, к возрастанию погрешности измерения. Уменьшение поверхности происходит в результате загрязнения пленки механическими примесями и полимеризующимися на ней компонентами анализируемого газа и в результате постепенного выноса пленки газовым потоком.

В связи с перечисленным, во время эксплуатации гигрометров количество влаги, не извлеченной в чувствительном элементе, постепенно увеличивается, что приводит к увеличению погрешности измерения.

Зная законы распределения тока по длине чувствительного элемента и величину участка чувствительного элемента, занимаемого электродом 4, можно по величине тока электролиза в цепи электродов 4 и 2 определить полноту извлечения влаги в чувствительном элементе.

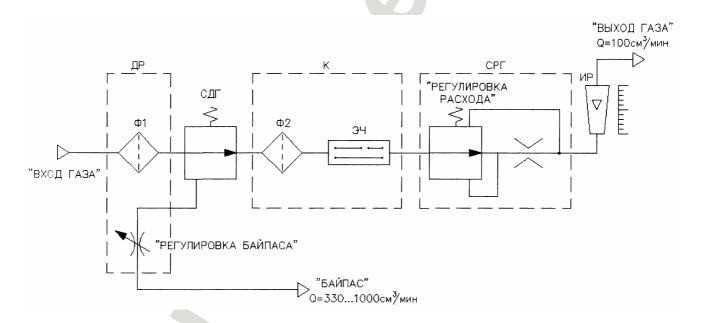
Конструктивно гигрометр состоит из блока измерения и датчика.

- С целью проверки полноты извлечения влаги в конструкции гигрометра предусмотрена возможность контроля полноты извлечения влаги в чувствительном элементе, в виде сигнальной лампы «ОТКАЗ», расположенной на передней панели блока измерений.
  - 1.4.3. Обеспечение взрывозащищенности
- 1.4.3.1. Взрывозащищенность оболочки 5К5.887.121 обеспечивается заключением электрических частей во взрывонепроницаемую оболочку по ГОСТ 22782.6-81, которая выдерживает давление взрыва внутри нее и исключает передачу взрыва в окружающую среду, а также соблюдением

общих технических требований к взрывозащищенному электрооборудованию по ГОСТ 22782.0-81 и ГОСТ Р 51330.13-99.

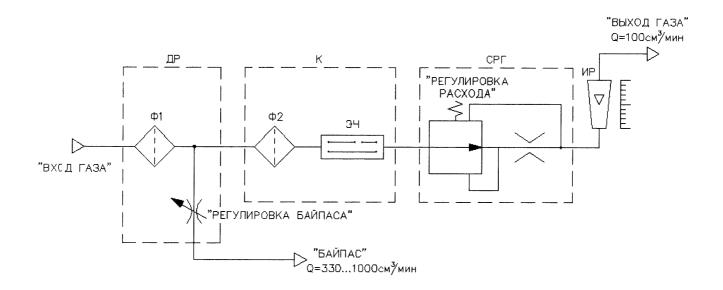
Электрические параметры сети, подаваемой в оболочку, соответствуют системе безопасного сверхнизкого напряжения:

- род тока постоянный;
- напряжение не более 40 В;
- потребляемый ток в режиме измерения не более 15 мА, а при коротком замыкании не более 50 мА;
- потребляемая мощность в режиме измерения не более 0,6 Вт, а при коротком замыкании не более 2 Вт;
- электрические цепи питания установлены на изоляторах;
- кабель, предназначенный для подачи питания должен иметь сечение жилы не менее 0,5 мм² и должен выдерживать без нагрева ток короткого замыкания;
- оболочка 5К5.887.121, датчик и блок измерений имеют заземляющие зажимы;
- трансформатор, с вторичной обмотки которого подается питание в оболочку 5К5.887.121, выдерживает продолжительное время без нагрева ток короткого замыкания.
- при коротком замыкании цепей питания, подаваемого в оболочку 5К5.887121, на блоке измерений загораются одновременного лампочки «ОТКАЗ» и «ПЕРЕГРУЗКА».


1.4.3.2. Взрывонепроницаемая оболочка состоит из корпуса и крышки, изготовленных из стали. Внутри корпуса неподвижно закреплен кронштейн с чувствительным элементом. К основанию корпуса приварены штуцеры, в которых установлены огнепреградители, и втулка для прямого ввода кабеля. Крышка выполнена из трубы с приваренным фланцем. С другой стороны трубы нарезана резьба для завинчивания крышки в корпус, и приварена бобышка для стопорения крышки с корпусом.

Взрывонепроницаемость оболочки обеспечивается использованием взрывозащиты. Взрывонепроницаемые цилиндрические шелевой резьбовые соединения обозначены надписью «ВЗРЫВ» с указанием FOCT 22782.6-81 допустимых ПО параметров взрывозащиты. Взрывонепроницаемость обеспечивается кабеля прямого ввода уплотнением C ПОМОЩЬЮ эластичного резинового Взрывоустойчивость оболочки проверяется при ее изготовлении путем гидравлических испытаний избыточным давлением 0,9 МПа за время не менее 10 с. Отсутствие легких сплавов с содержанием магния более 6 % фрикционную искробезопасность. Электростатическая обеспечивает искробезопасность обеспечивается отсутствием пластмассовых наружных частей оболочки. Крепежные детали, а также контактные токоведущие и заземляющие зажимы предохранены от самоотвинчивания пружинными шайбами. Максимальная температура наружной поверхности, внутренних

частей оболочки и датчика не превышает плюс 60°С. На крышке имеется предупредительная надпись «ОТКРЫВАТЬ, ОТКЛЮЧИВ ОТ СЕТИ».


- 1.4.3.3. Требования к размерам оболочки, шероховатостям поверхности, материалам, покрытиям, зазорам, маркировке по взрывозащите и предупредительным надписям приведены в чертеже взрывозащиты (см. Приложение Г).
- 1.4.3.4. Датчики гигрометров в зависимости от входного давления (см. таблицу 1) выполнены по разным газовым схемам. Принципиальные газовые схемы гигрометров приведены на рисунках 2, 3, 4.
- 1.4.4. Оболочка 5К5.887.121 встроена в корпусе датчика из алюминиевых сплавов с содержанием магния менее 6 %. Кроме того, в датчике установлены стабилизатор давления газов, выполненный из нержавеющей стали 12Х18Н10Т. На передней панели датчика установлена рамка 5К8.636.142, изготовленная из полистирола УПС 1002, площадь которой менее 64 см².

Стабилизатор служит для понижения давления газа, подаваемого в оболочку 5К5.887.121.



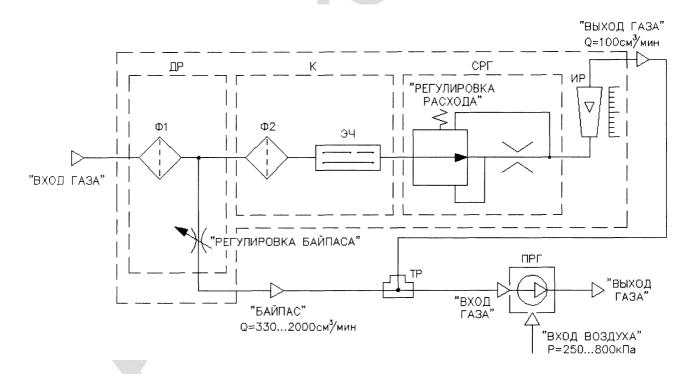

ДР – дроссель; ИР – индикатор расхода; К – оболочка; СДГ – стабилизатор давления газа; СРГ – стабилизатор расхода газа; Ф1 – фильтр; Ф2 – фильтр; ЭЧ – элемент чувствительный.

Рисунок 2. Схема газовая принципиальная гигрометра на высокое давление.



ДР – дроссель; ИР – индикатор расхода; К – оболочка; СРГ – стабилизатор расхода газа; Ф1 – фильтр; Ф2 – фильтр; ЭЧ – элемент чувствительный.

Рисунок 3. Схема газовая принципиальная гигрометра на низкое давление.



ДР – дроссель; ИР – индикатор расхода; К – оболочка; ПРГ – побудитель расхода газа; СРГ – стабилизатор расхода газа; Ф1 – фильтр; Ф2 – фильтр; ЭЧ – элемент чувствительный; ТР – тройник 5К6.453.082.

Рисунок 4. Схема газовая принципиальная гигрометра на разрежение.

Для поддержания постоянного расхода через оболочку 5К5.887.121 установлен стабилизатор расхода газа, выполненный из нержавеющей стали. Газовые линии выполнены трубками Ø2×0,5 из стали 12X18H10T.

1.4.5. Комплект электрических принципиальных схем согласно 5К4.079.041 уложен в тарный ящик.

#### 1.5. Маркировка и пломбирование

1.5.1. На лицевой панели датчика нанесены надписи: «БАЙКАЛ-2ВМ», «ДАТЧИК НА ВЫСОКОЕ ДАВЛЕНИЕ» или «ДАТЧИК НА НИЗКОЕ ДАВЛЕНИЕ» или «ДАТЧИК НА РАЗРЕЖЕНИЕ», «РАСХОД ГАЗА», знак Госреестра, знак соответствия и код МГ02

На крышке взрывонепроницаемой оболочки 5К5.887.121 нанесены надписи: «ОТКРЫВАТЬ, ОТКЛЮЧИВ ОТ СЕТИ», 1ExdIICT3 X, IP54, а на фирменной табличке знак соответствия и код МГ02.

- 1.5.2. На верхней крышке датчика нанесена надпись «РЕГУЛИРОВКА РАСХОДА».
- 1.5.3. На задней стенке корпуса датчика нанесены надписи: «КАБЕЛЬНЫЙ ВВОД ОТ БЛОКА ИЗМЕРЕНИЙ», «ВХОД ГАЗА», «БАЙПАС», «ВЫХОД ГАЗА», «РЕГУЛИРОВКА БАЙПАСА».
- 1.5.4. На задней стенке датчика укреплена планка, на которой нанесены:
  - товарный знак предприятия-изготовителя;
  - условное обозначение гигрометра;
  - климатическое исполнение УХЛ4;
  - обозначение технических условий;
  - обозначение погрешности и ее пределы;
  - заводской номер гигрометра (по системе нумерации предприятия-изготовителя);
  - степень защиты IP20 по ГОСТ 14254-96;
  - последние две цифры года изготовления.
- 1.5.5. На передней панели блока измерений нанесены надписи: «БАЙКАЛ-2ВМ», «БЛОК ИЗМЕРЕНИЙ», «СЕТЬ», «ЗАДАТЧИК УСТАВКА», «УСТАВКА», «УСТАВКА ЗОНЫ: 0-1, 1-10, 10-100, 100-1000» « $H_2O$ , ppm 0... 1000», «УСТАВКА», «ОТКАЗ», «ПЕРЕГРУЗКА», знак Госреестра.
- 1.5.6. На задней стенке корпуса блока измерений нанесены надписи: «ВЫХОД», «К ДАТЧИКУ», «СИГНАЛИЗАЦИЯ», «0,5A», «0,5A», «СЕТЬ», а также знак заземления по ГОСТ 21130-75.
- 1.5.7. На задней стенке блока измерений укреплена планка, на которой нанесены:
  - товарный знак предприятия-изготовителя;
  - условное обозначение гигрометра;
  - климатическое исполнение УХЛ4;
  - обозначение технических условий;

- обозначение погрешности и ее пределы;
- заводской номер гигрометра (по системе нумерации предприятияизготовителя);
- степень защиты IP20 по ГОСТ 14254-96;
- последние две цифры года изготовления.
- 1.5.8. На лицевой панели побудителя расхода газа нанесены надписи: «ПОБУДИТЕЛЬ РАСХОДА ГАЗА», «ДАВЛЕНИЕ ПИТАНИЯ», «СТАБИЛИЗИРУЕМОЕ РАЗРЕЖЕНИЕ».
- 1.5.9. На боковой стенке корпуса побудителя расхода газа должна быть нанесена надпись «ВХОД ВОЗДУХА».
- 1.5.10. На нижней стенке корпуса побудителя расхода газа должны быть нанесены надписи: «ВХОД ГАЗА», «ВЫХОД ГАЗА».
- 1.5.11. На задней стенке корпуса побудителя расхода газа должна быть укреплена планка на которой нанесены:
  - товарный знак предприятия-изготовителя;
  - ПРГ;
  - в комплекте БАЙКАЛ-2ВМ;
  - заводской номер;
  - две последние цифры года изготовления.
    - 1.5.12. Блок измерения гигрометра должен быть опломбирован.

#### 1.6. Упаковка

- 1.6.1. Датчик, побудитель расхода газа и блок измерения гигрометра БАЙКАЛ-2ВМ упаковываются в полиэтиленовые пакеты и укладываются в картонные коробки, выполненные по чертежам предприятия-изготовителя.
- 1.6.2. Коробки с составными частями гигрометра, ящик с комплектом ЗИП и монтажных частей, эксплуатационные документы размещаются в тарном ящике. Свободное пространство в тарном ящике заполняется гофрированным картоном. Под крышку тарного ящика укладывается упаковочный лист.

#### 2. Использование по назначению

## 2.1. Эксплуатационные ограничения

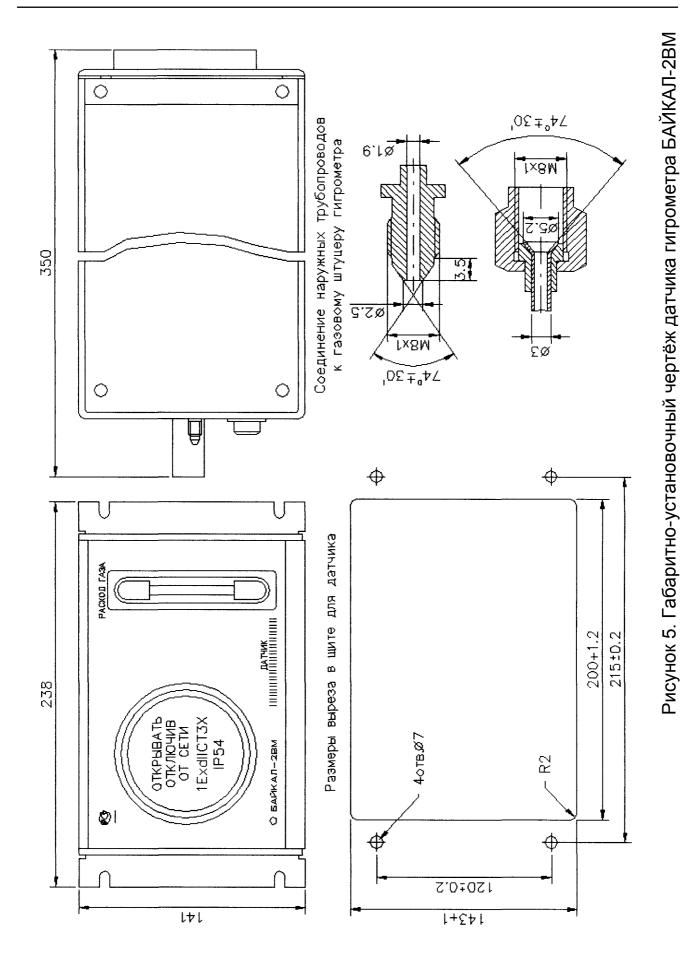
2.1.1. Особые условия безопасной эксплуатации гигрометра, обусловленны знаком «Х» в маркировке взрывозащиты оболочки 5К5.887.121.

ВНИМАНИЕ! При загорании лампочек «ОТКАЗ» и «ПЕРЕГРУЗКА» на блоке измерений необходимо немедленно отключить гигрометр от сети.

## 2.1.2. При работе не допускается:

- эксплуатировать гигрометр без заземления;
- подключать гигрометр к электрической сети до проверки герметичности датчика;
- вскрывать блок измерений и взрывонепроницаемую оболочку до отключения гигрометра от сети питания;
- заменять предохранители под напряжением, закорачивать их или заменять другими, рассчитанными на больший ток;
- устранять негерметичность газовой схемы или менять чувствительный элемент, не отключив гигрометр от газовой магистрали и питающей сети;
- категорически запрещается применять узлы и блоки, не входящие в данный комплект.

## 2.2. Подготовка гигрометра к работе


2.2.1. Датчик установите на кронштейне или щите в месте удобном для обслуживания с расчетом, чтобы расстояние до точки отбора анализируемого газа не превышало 2 м.

Габаритно установочный чертеж датчика приведен на рисунке 5.

При установке датчика на разрежение необходимо для питания побудителя расхода газа подвести сухой сжатый воздух под давлением от 250 до 800 кПа.

- 2.2.2. При монтаже датчика необходимо руководствоваться гл. 7.3 «Правила устройства электроустановок» (ПУЭ) и «Правила технической эксплуатации электроустановок потребителем» (ПТЭЭП) гл. 3.4 и ГОСТ Р51330.13-99. Перед монтажом датчика проверить исправность оболочки, отсутствие на ней трещин и пробоин, нанесение маркировки взрывозащиты, предупредительной надписи. Датчик с поврежденной оболочкой, не имеющий маркировки взрывозащиты к эксплуатации не допускается.
- 2.2.3. Подключение датчика к блоку измерения производится с использованием кабеля имеющего сертификат и разрешение на применение во взрывоопасных зонах класса В-1а, длиной не более 300 м герметично вмонтированном в корпус датчика и подключается к разъему согласно схемы электрических соединений. Прокладка кабеля должна соответствовать требованиям ГОСТ Р51330.13-99, гл. 7.3 ПУЭ. Сечение жил кабеля должно быть не менее 0,5 мм², количество жил 3, диаметр оболочки кабеля 8 мм.

Соединение датчика с точкой отбора анализируемого газа должно выполняться трубкой 3×0,5 из стали 12X18H10T. Для отключения датчика от технологического трубопровода на подводящей линии должен быть установлен запорный вентиль, изготовленный из стали 12X18H10T.



18

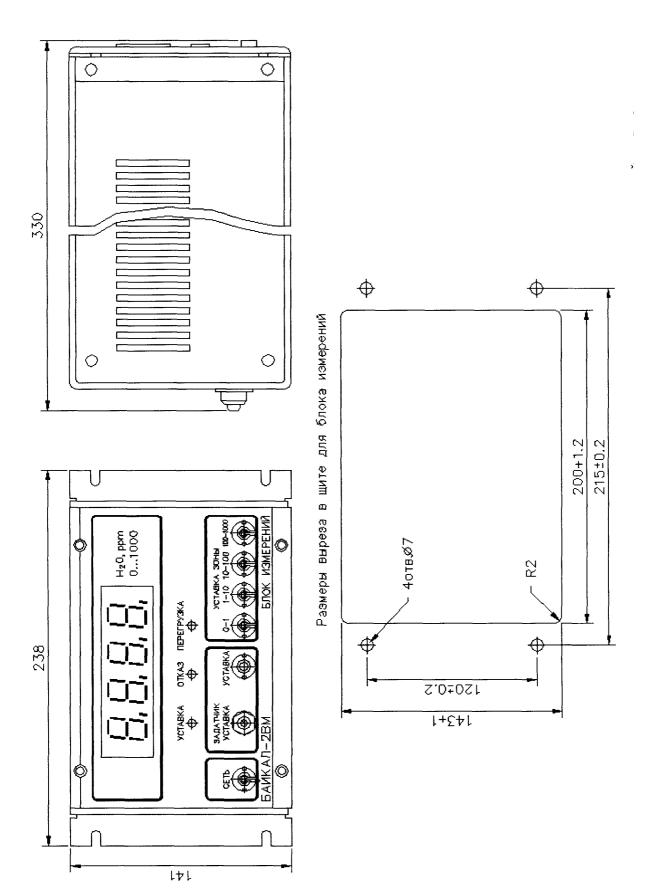



Рисунок 6. Габаритно-установочный чертёж блока измерений гигрометра БАЙКАЛ-2ВМ

Вентиль с гигрометром не поставляется. Все узлы и детали подводящих коммуникаций должны быть тщательно промыты этиловым спиртом и подсушены сухим газом.

С целью обеспечения возможно меньшего времени установления показаний гигрометра, объем и длина газоподводящей линии должна быть минимальной.

- 2.2.4. Блок измерения предназначен для преобразования тока электролиза чувствительного элемента в показания гигрометра. Габаритно-установочный чертеж блока измерения приведен на рисунке 6.
- 2.2.5. Блок измерения и датчик гигрометра устанавливают на щитах. Побудитель расхода газа устанавливают рядом с датчиком.

К месту установки блока измерения гигрометра должна быть подведена сеть переменного тока напряжением 220 В и частотой 50 Гц. Все блоки должны быть надежно заземлены. Для этого предусмотрены наружный

и внутренний заземляющие зажимы по ГОСТ 21130-75. Заземление должно соответствовать требованиям ГОСТ Р51330.13-99 и гл. 7.3 ПУЭ.

- 2.2.6. После установки всех блоков необходимо произвести монтаж межблочных электрических соединений согласно схеме электрических соединений, приведенной на рисунке 7. Тумблер «СЕТЬ» должен быть в выключенном состоянии.
- 2.2.7. Габаритно установочный чертеж побудителя расхода газа приведен на рисунке 8.
- 2.2.8. Проверку герметичности газовой системы датчика гигрометра производите в следующей последовательности:
  - соберите пневматическую систему, приведенную на рисунке 9;
  - заглушите штуцеры «БАЙПАС» и «ВЫХОД ГАЗА» датчика;
  - откройте запорный вентиль ВЗ и установите по манометру необходимое давление в газовой системе гигрометра.
  - Испытательное давление гигрометра с датчиком на высокое давление не должно превышать 100 кПа (1,0 кгс/см²), с датчиком на низкое давление 200 кПа (2,0 кгс/см²), с датчиком на разрежение 20 кПа (0,2 кгс/см²);
  - закройте вентиль ВЗ и произведите отсчет показаний манометра через 2 и 15 мин после закрытия вентиля.

Спад давления определяемый по разности показаний манометра, не должен быть более 5 кПа (0,05 кгс/см $^2$ ).

- 2.2.9. Проверку и при необходимости, настройку расхода анализируемого газа через чувствительный элемент производите в следующей последовательности:
  - включите тумблер «СЕТЬ»;
  - установите рабочее давление анализируемого газа: оно должно быть в пределах указанных в разделе «Свидетельство о приемке» настоящего руководства по эксплуатации;

- подсоедините устройство для измерения расхода газа УИРГ-2А к штуцеру «ВЫХОД ГАЗА». Методика выполнения измерений расхода приведена в "Устройство для измерения расхода газа УИРГ. Аттестат методики выполнения измерений расхода газа".
- для датчика на разрежение подсоедините устройство для измерения расхода газа УИРГ-2Р (методика выполнения измерений расхода приведена в приложении А);

Расход газа через чувствительный элемент, приведенный к нормальным условиям, должен быть (100±1) см³/мин, в противном случае отрегулируйте расход анализируемого газа при помощи ручки стабилизатора расхода газа.

• регулировку расхода анализируемого газа через байпасную линию, проведите с помощью регулировочного винта расположенного под штуцером «ВХОД ГАЗА».

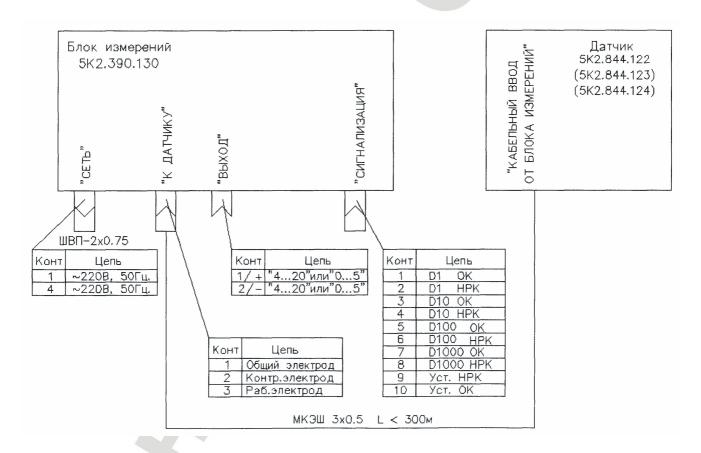



Рисунок 7. Гигрометр БАЙКАЛ-2BM. Схема электрических соединений.

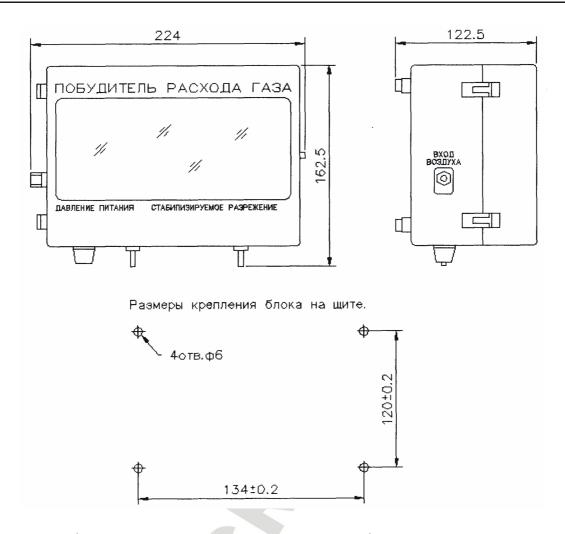
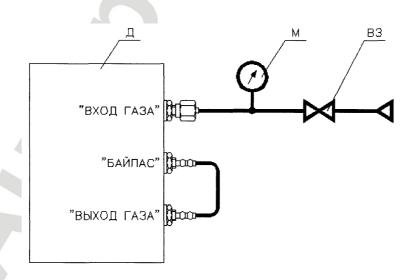




Рисунок 8. Габаритно-установочный чертёж побудителя расхода газа.



Д – датчик; М – манометр; ВЗ – вентиль запорный.

Рисунок 9. Пневматическая схема для проверки герметичности газовой схемы датчика гигрометра.

#### 2.3. Использование гигрометра

2.3.1. После выполнения монтажа гигрометра произведите тщательный внешний осмотр и убедитесь в правильности установки блоков гигрометра и их соединений согласно схемам электрических и газовых соединений.

Включение гигрометра в работу производите в следующей последовательности:

- включите тумблер «СЕТЬ» после чего на передней панели блока измерений гигрометра должно загореться индикаторное табло, при этом могут гореть индикаторы «ПЕРЕГРУЗКА», «ОТКАЗ», «УСТАВКА»;
- отсоедините от штуцера «ВХОД ГАЗА» подводящую линию, закройте штуцер заглушкой, произведите продувку подводящей линии анализируемым газом в течение 5-10 мин, закройте вентиль, снимите заглушку, подсоедините газоподводящую линию;
- снимите заглушки со штуцеров «ВЫХОД ГАЗА» и «БАЙПАС»;
- откройте запорный вентиль в газоподводящей линии и убедитесь в прохождении анализируемого газа через гигрометр с помощью индикатора расхода. Поплавок индикатора при этом должен подняться.
- проверьте герметичность подсоединения газоподводящей линии с помощью мыльного раствора;
- измерьте и отрегулируйте расход газа через чувствительный элемент, согласно вашим рабочим условиям (атмосферному давлению и входному давлению). Методика выполнения измерений расхода приведена в "Устройство для измерения расхода газа УИРГ. Аттестат методики выполнения измерений расхода газа";
- произведите сушку газовой системы гигрометра продувкой анализируемым газом. Ориентировочное время сушки 5 ч. Гигрометр готов к работе.
- 2.3.2. Для задания индексов сигнализации достижения в анализируемом газе объемной доли влаги необходимо установить тумблер «УСТАВКА ЗОНЫ» в необходимую область задания индексов, затем, нажав кнопку "УСТАВКА" с помощью регулятора «ЗАДАТЧИК УСТАВКА» выставить более точно индекс сигнализации. Индикатор «УСТАВКА» будет гореть, а на разъеме «СИГНАЛИЗАЦИЯ» сработают контакты 8, 9 в том случае, если в анализируемом газе содержание влаги превышает заданное значение в выбранной области измерения.
- 2.3.3. ОДВ (В, млн<sup>-1</sup>) по унифицированному выходному сигналу постоянного тока 0-5 мА или 4-20 мА рассчитывается по формулам (1), (2).

Для дистанционного определения диапазона измерений необходимо измерить величину сопротивления на контактах 1-2, 3-4, 5-6 и 7-8 разъема «СИГНАЛИЗАЦИЯ». Наличие замкнутых контактов говорит о выбранном диапазоне измерения.

#### 3. Техническое обслуживание гигрометра

#### 3.1. Общие указания

- 3.1.1. Эксплуатацию гигрометра проводить с учетом требований гл. 3.4 «Правил технической эксплуатации электроустановок потребителей», «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок» (ПОТ РМ-016-2001, РД153-34.0-03.150-00), ГОСТ Р51330.16-99.
- 3.1.2. При одновременном загорании лампочек «ОТКАЗ» и «ПЕРЕГРУЗКА» на блоке измерений необходимо отключить блок измерений от сети и заменить чувствительный элемент в оболочке 5К5.887.121 как указано в п. 3.3.1.
- 3.1.3. При эксплуатации гигрометра следует иметь в виду, что при резком изменении температуры или давления анализируемого газа нарушается сорбционное равновесие паров воды на стенках коммуникаций, вызывающие изменение ОДВ в анализируемом газе. После установления сорбционного равновесия гигрометр опять покажет действительную влажность газа.
- 3.1.4. Через каждые 30 сут работы гигрометра, необходимо проверять расход газа через чувствительный элемент и при необходимости отрегулировать его, как указано в п. 2.2.8.
  - 3.1.5. Рабочий ресурс чувствительного элемента около 2·10<sup>6</sup> млн<sup>-1</sup>·ч.
- 3.1.6. Таблица значений влажности газов в разных единицах измерений приведена в приложении Б.

## 3.2. Меры безопасности

3.2.1. Особые условия эксплуатации гигрометра, обусловленные знаком X в маркировке взрывозащиты оболочки 5К5.887.121.

# ВНИМАНИЕ! При загорании лампочек ОТКАЗ и ПЕРЕГРУЗКА на блоке измерений необходимо немедленно отключить гигрометр от сети.

- 3.2.2. По способу защиты человека от поражения электрическим током гигрометр должен соответствовать классу 01 по ГОСТ 12.2.007.0-75.
- 3.2.3. Требования к заземляющим устройствам, маркировке, различительной окраске по ГОСТ 12.2.007.0-75.

Оболочка 5К5.887.121 должна иметь внутренний и наружный заземляющие зажимы и знаки заземления по ГОСТ 21130-75.

- 3.2.4. Категорически запрещается устанавливать блок измерения гигрометра во взрывоопасном помещении.
- 3.2.5. При измерении ОДВ во взрывоопасных газах и газовых смесях сброс газа должен производиться в дренажную линию.

- 3.2.6. При измерении ОДВ в кислороде газоподводящая линия должна быть тщательно промыта от следов масел и жиров четыреххлористым углеродом.
- 3.2.7. Запрещается вскрывать датчик и блок измерений гигрометров, не отсоединив сетевой кабель от источника сетевого питания.
- 3.2.8. Запрещается подавать на вход датчика анализируемый газ под давлением более указанного в руководстве по эксплуатации.
- 3.2.9. К обслуживанию допускается слесарь КИПиА изучивший устройство и работу гигрометра и правила техники безопасности при работе со сжатыми газами.

## 3.3. Порядок технического обслуживания гигрометра

- 3.3.1. Замену чувствительного элемента производите в следующей последовательности:
  - отключите гигрометр от сети 220 В;
  - после отключения гигрометра от сети 220 В откройте с помощью пластины и ключа из комплекта ЗИП крышку взрывонепроницаемой оболочки датчика гигрометра;
  - отверните гайку и извлеките чувствительный элемент и на его место поставьте взятый из комплекта ЗИП;
  - проверьте герметичность газового канала гигрометра и при обнаружении негерметичности устраните ее согласно п. 2.2.8.
  - закройте с помощью пластины и ключа из комплекта ЗИП крышку взрывонепроницаемой оболочки датчика.
- 3.3.2. После замены чувствительного элемента, проверку работоспособности производите по п. 2.3.1.

#### 4. Текущий ремонт гигрометра

## 4.1. Возможные неисправности и методы их устранения

- 4.1.1. Перечень наиболее часто встречающихся или возможных неисправностей приведен в таблице 5.
- 4.2. Данные по времени наступления отказа гигрометра, характеру отказа, причинам отказа и мерам по устранению неисправностей должны заноситься в таблицу 6. В случае отсутствия этих данных рекламации не принимаются.

Таблица 5.

| Наименование неисправностей, внешнее проявление и дополнительные признаки          | Вероятная причина                                                                       | Метод устранения                                                                                                                                           |  |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. При подключении гигрометров к сети переменного тока индикаторное табло не горит | Перегорела плавкая вставка Обрыв сетевого кабеля                                        | Замените плавкой вставкой из комплекта ЗИП Отремонтируйте кабель                                                                                           |  |  |
| 2. Показания гигрометра не стабильны                                               | Негерметичность газового канала гигрометра                                              | Проверьте герметичность газового канала гигрометра и при обнаружении негерметичности устраните ее согласно п. 2.2.9                                        |  |  |
|                                                                                    | Входное давление анализируемого газа не соответствует разделу "Свидетельство о приемке" | Проверьте входное давление анализируемого газа и установите его в соответствие с разделом "Свидетельство о приемке" настоящего руководства по эксплуатации |  |  |

Примечание: при проведении ремонтных работ по пунктам 1, 2 таблицы 5:

- отключите гигрометр от сети 220 В;
- проверьте наличие неисправности и устраните ее;

#### Таблица 6.

| таолица о.                                                                             |                                   |                                                    |   |                             |                 |
|----------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|---|-----------------------------|-----------------|
| Дата и время отказа гигрометра или его составной части. Режим работы характер нагрузки | (внешнее<br>проявле-<br>ние неис- | правности (от-<br>каза), количе-<br>ство часов ра- | • | фамилия и подпись лица, от- | Приме-<br>чание |
|                                                                                        |                                   |                                                    |   |                             |                 |

4.3. Итоговые сведения за годовой период эксплуатации гигрометра должны заноситься в таблицу 7.

Таблица 7.

| Годы | Количество | Итого с начала | Подпись        |
|------|------------|----------------|----------------|
|      | часов      | эксплуатации   | ответственного |
|      |            |                |                |

- 4.4. Текущий ремонт датчика и оболочки 5К5.887.121 проводится в соответствии требованиям ГОСТ Р51330.16-99 гл.3.4 ПТЭЭП.
- 4.5. Капитальный ремонт датчика и оболочки 5К5.887.121, касающийся средств взрывозащиты, производится специализированными ремонтными предприятиями в соответствии с требованиями ГОСТ 51330.18-99 и РД16.407.

#### 5. Транспортирование и хранение

5.1. Гигрометр, упакованный в тару, транспортируется в крытом транспорте (железнодорожных вагонах, укрытых брезентом, в кузовах автомобилей, в герметизированных отсеках самолетов).

Вид отправки – мелкие партии, одиночные изделия.

- 5.2. Условия транспортирования гигрометра в части воздействия климатических факторов должны соответствовать условиям хранения 4 по ГОСТ 15150-69.
- 5.3. Условия хранения гигрометра на складах изготовителя и потребителя должны соответствовать условиям хранения 1 по ГОСТ 15150-69.

#### 6. Методика поверки

6.1. В настоящем разделе установлены методы и средства поверки (калибровки) гигрометра.

Гигрометр подвергается поверке или калибровке в зависимости от сферы применения согласно Закону РФ «Об обеспечении единства измерений». Периодичность поверки – один раз в год, периодичность калибровки устанавливается руководителем метрологической службы юридического лица.

## 6.2. Операции и средства поверки (калибровки)

6.2.1. При проведении поверки (калибровки) должны быть выполнены операции указанные в таблице 8.

## Таблица 8.

| Наименование операции                                                                                                                                                                                           | Номер пункта раздела «Методика поверки» | Первичная поверка, после ремонта | Периоди-<br>ческая<br>поверка |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|-------------------------------|
| 1. Внешний осмотр                                                                                                                                                                                               | 6.7.1, 6.7.2                            | +                                | +                             |
| 2. Опробование                                                                                                                                                                                                  | 6.8                                     | +                                | +                             |
| 2.1. Определение электрического сопротивления изоляции                                                                                                                                                          | 6.8.1                                   | +                                | +                             |
| 2.2. Проверка герметичности газовой системы датчика и герметичности измерителя расхода газа (УИРГ)                                                                                                              | 6.8.2                                   | +                                | +                             |
| 2.3. Проверка функционирования гигрометра                                                                                                                                                                       | 6.8.3                                   | +                                | +                             |
| 2.4. Проверка устройства сигнализации о неисправности чувствительного элемента                                                                                                                                  | 6.8.4                                   | +                                | -                             |
| 2.5. Проверка устройства сигнализации о перегрузке по влажности анализируемого газа                                                                                                                             | 6.8.5                                   | +                                | -                             |
| 3. Определение метрологических<br>характеристик                                                                                                                                                                 | 6.9                                     | +                                | +                             |
| 3.1. Определение основной приведенной погрешности                                                                                                                                                               | 6.9.1                                   | +                                | +                             |
| 3.1.1. Определение приведенной погрешности δ <sub>IO</sub> и δ <sub>IBЫХ</sub> преобразования тока чувствительного элемента в показание цифрового табло гигрометра и унифицированный выходной сигнал            | 6.9.1.1                                 | +                                | +                             |
| 3.1.2. Определение приведенной погрешности $\delta_{\rm Q}$ , обусловленной отклонением расхо-да газа через чувствительный элемент от номинального                                                              | 6.9.1.2                                 | +                                | +                             |
| 3.1.3. Определение приведенной погрешности $\delta_{\Phi}$ , обусловленной фоновым выходным сигналом гигрометра                                                                                                 | 6.9.1.3                                 | +                                | +                             |
| 3.1.4. Определение приведенной погрешности $\delta_{\text{H}}$ , обусловленной неполным извлечением влаги в чувствительном элементе                                                                             | 6.9.1.4                                 | +                                | +                             |
| 3.1.5. Определение основной приведенной погрешности гигрометра $\delta_0$ (%) и $\delta'_0$ (%) комплектным методом, с использованием образцового генератора влажного газа РОДНИК-2 в качестве рабочего эталона | 6.9.1.5                                 | +                                | +                             |
| 3.2. Определение погрешности срабатывания устройства сигнализации о превышении заданного значения ОДВ в анализируемом газе                                                                                      | 6.9.2                                   | +                                | -                             |

### Продолжение таблицы 8.

| Наименование операции                                                                                 | Номер пункта раздела «Методика поверки» | Первичная поверка, после ремонта | Периоди-<br>ческая<br>поверка |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|-------------------------------|
| 3.3. Определение времени установления показаний                                                       | 6.9.3                                   | +                                | +                             |
| 3.4. Проверка устройства сигнализации о диапазоне измерения ОДВ по выходному унифицированному сигналу | 6.9.4                                   | +                                | -                             |

- 6.2.2 При проведении поверки (калибровки) должны применяться следующие средства поверки, оборудование и материалы:
  - Многопредельный микроамперметр КТ 0,2 ГОСТ 8711-93 (2 шт.)
  - Мегаомметр постоянного тока 0...200 МОм, КТ 1, 500 В ТУ25-04-800-71
  - Манометр МО КТ 0,4, 0...250 кПа (0...2,5 кгс/см²) ГОСТ 2405-88.
  - Манометр МО КТ 0,4, 0...100 кПа (0...1,0 кгс/см²) ГОСТ 2405-88.
  - Магазин сопротивлений Р33 КТ 0,2 ТУ 25-04-235-75 (2 шт.)
  - Магазин сопротивлений Р4002 КТ 0,2 ТУ25-04-1081 (2 шт.)
  - Комбинированный прибор (тестер) Ц 4341, КТ 2,5 ТУ 25-04-3300-74
  - Секундомер 0-60 с, 0-30 мин. КТ 3
  - Вентиль запорный 10Э6 ТУ6-80 5Г4.463.013 ТУ
  - Генератор влажного газа РОДНИК-2 5К2.844.067
  - Генератор влажного газа РОДНИК-4 5К2.844.100 ТУ (2 шт.)
  - Сжатый газ в баллоне. Азот по ГОСТ 9293-74
  - Миллиамперметр самопишущий 0...5 мА или 4...20 мА, КТ 1,5
  - Термометр с диапазоном измерений 0-50°C, ценой деления 0,1°C
  - Барометр-анероид с диапазоном измерений от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.) с пределами допускаемой погрешности ±0,1 кПа (±0,8 мм рт. ст.)
  - Жгут № 1, жгут № 2, кабель «Сеть» (см. приложение Е).

## Примечания:

- 1. Допускается применение других средств поверки с аналогичными характеристиками.
- 2. Все средства измерений должны иметь действующие поверительные клейма или свидетельства о поверке.
  - 6.3. Время проведения поверки не более 8 ч.
- 6.4. К проведению поверки допускаются лица, аттестованные в качестве поверителей средств измерений физико-химических величин в соответствии с правилами ПР 50.2.012-94, изучившие настоящую методику и руководство по эксплуатации.
- 6.5. При поверке гигрометра должны быть соблюдены меры безопасности по п. 3.2 настоящего руководства по эксплуатации.

6.6. При соблюдении поверки гигрометра должны выполняться условия по п. 1.1.2 настоящего руководства по эксплуатации.

## 6.7. Проведение поверки (калибровки)

- 6.7.1. Внешний осмотр
- 6.7.2. При проведении внешнего осмотра должно быть установлено соответствие гигрометра следующим требованиям:
  - комплектность гигрометра должна соответствовать настоящему руководству по эксплуатации, кроме расходуемых частей;
  - маркировка гигрометра должна соответствовать требованиям приведенным в п. 1.5 настоящего руководства по эксплуатации;
  - корпус гигрометра не должен иметь дефектов, препятствующих его функционированию;
  - резьба на штуцерах гигрометра должна быть исправной, штуцеры должны быть прочно закреплены на корпусе и закрыты защитными заглушками;
  - УИРГ должен соответствовать следующим требованиям:
  - бюретка и канал тройника должны быть чисто вымыты;
  - на бюретке не должно быть сколов, трещин и других дефектов, которые могут повлиять на метрологические характеристики УИРГ;
  - на трубе подводящей газ и резиновой спринцовке, не должно быть трещин и разрывов.

## 6.8. Опробование

- 6.8.1. Измерение электрического сопротивления изоляции гигрометра произведите мегаомметром при включенном тумблере «СЕТЬ». Электрическое сопротивление измерьте между закороченными штырьками сетевой вилки и корпусом. Оно должно быть не менее 40 МОм.
- 6.8.2. Проверку герметичности газовой системы датчика проводите следующим образом.

Соберите пневматическую схему приведенную на рисунке 9. У датчика заглушите штуцер «БАЙПАС» и «ВЫХОД ГАЗА». Откройте запорный вентиль ВЗ и установите по манометру необходимое испытательное давление в газовой системе. Испытательное давление для гигрометра на высокое давление должно быть 0,1 МПа (1 кгс/см²), на низкое давление - 0,2 МПа (2 кгс/см²), на разрежение - 0,02 МПа (0,2 кгс/см²). Закройте вентиль ВЗ и произведите отсчет показаний манометра через 5 и 20 мин после закрытия вентиля. Спад давления за 15 мин в газовой системе определите по разности показаний манометра. Спад давления не должен быть более 5 кПа (0,05 кгс/см²).

Проверку герметичности измерителя расхода газа проводите в следующей последовательности:

- а) герметично заглушите входное и выходное отверстие;
- б) поместите его в емкость заполненную водой;

- в) нажмите резиновую спринцовку;
- г) измеритель расхода газа герметичен в случае отсутствия выходящих пузырьков из заглушенного объема.
- 6.8.3. Для проверки функционирования гигрометра включите его в работу согласно настоящему руководству по эксплуатации. На вход РОДНИК-4 гигрометра генератора подайте ОДВ OT газ 100-1000 млн<sup>-1</sup>.Через после подачи проверьте газа функционирование гигрометра.

Гигрометр функционирует, если:

- горит цифровое табло;
- не горят сигнальные лампы «ОТКАЗ», «ПЕРЕГРУЗКА»;
- индикатор расхода газа гигрометра указывает на прохождение газа через чувствительный элемент.
- 6.8.4. Проверку устройства сигнализации о неисправности чувствительного элемента проводите в следующей последовательности:
- а) подключите к разъему «К ДАТЧИКУ» жгут № 1, к контактам 1,2 жгута подключите магазины сопротивлений Р33 и Р4002;
  - б) установите максимальные значение магазинов сопротивления;
- в) подключите к разъему «СЕТЬ» сетевой кабель и подключите его к источнику сетевого напряжения;
- г) установите сетевой тумблер в положение «СЕТЬ», при этом должно включиться цифровое табло;
- д) установите с помощью магазинов сопротивления показание цифрового табло от 10 до 20 млн<sup>-1</sup>;
- е) подключите к наконечникам 1,3 жгута магазин сопротивлений Р33 и плавно увеличивайте показания цифрового табло до переходного момента срабатывания сигнальной лампы «ОТКАЗ», производите отсчет показаний по цифровому табло.

Устройство сигнализации о неисправности чувствительного элемента функционирует, если выполнится неравенство:

$$\frac{B_{\kappa}}{B_{\Gamma}^{'}} \leq 0,145 \tag{3}$$

- где В<sub>к</sub> показания по цифровому табло, установленное магазином сопротивлений подключенного к концам 1,2 жгута № 1, млн<sup>-1</sup>;
  - 0,145 нормирующий множитель;
  - В- показание по цифровому табло в момент срабатывания сигнальной лампы «ОТКАЗ», млн<sup>-1</sup>.
- 6.8.5 Проверку устройства сигнализации о перегрузке по влажности анализируемого газа, проводите в следующей последовательности:

- а) подключите к разъему «К ДАТЧИКУ» жгут № 1, к наконечникам 1,3 жгута подключите магазин сопротивлений Р33;
- б) установите сетевой тумблер в положение «СЕТЬ», при этом должно включиться цифровое табло;
- в) увеличьте плавно с помощью магазинов сопротивления показания цифрового табло до включения сигнальной лампы «ПЕРЕГРУЗКА».

Устройство сигнализации о перегрузке по влажности в анализируемом газе соответствует установленному требованию, если сигнальная лампа «ПЕРЕГРУЗКА» включается при показании цифрового табло более 1000 млн<sup>-1</sup>.

## 6.9. Определение метрологических характеристик

6.9.1. Определение основной приведенной погрешности  $\delta_{\circ}$  (%) и  $\delta'_{\circ}$ (%) гигрометра поэлементным методом производите по формулам:

$$\delta_{o} = \delta_{I_{O}} + \delta_{Q} + \delta_{H} + \delta_{\Phi}$$
 (4)

$$\delta'_{Q} = \delta'_{I_{BMX}} + \delta_{Q} + \delta_{H} + \delta_{\Phi}$$
 (5)

где  $\delta I_0$  – приведенная погрешность преобразования тока чувствительного элемента в показания цифрового табло гигрометра, %;

 $\delta^{'}I_{Bыx}$  - приведенная погрешность преобразования тока чувствительного элемента в унифицированный выходной сигнал гигрометра 0-5 мА или 4-20 мА, %;

 $\delta_Q$  — приведенная погрешность, обусловленная отклонением расхода газа через чувствительный элемент от номинального значения, %;

 $\delta_{\text{H}}$  – погрешность, обусловленная неполным извлечением влаги в чувствительном элементе, %;

 $\delta_{\Phi}$  — приведенная погрешность, обусловленная фоновым показанием (выходным сигналом) гигрометра, принимается равной 5; 1,0 и 0,1 и 0,1 %, соответственно для диапазонов измерений ОДВ 0-1, 1-10, 10-100 и 100-1000 млн<sup>-1</sup>.

Суммирование погрешностей  $^{\delta}$   $_{I_{o}}$ ,  $_{\delta}^{'}$   $_{I_{Bых}}$   $_{\delta_{Q}}$ ,  $_{\delta_{H}}$ ,  $_{\delta_{\Phi}}$  производите алгебраически, то есть с учетом знаков, причем,  $_{\delta_{\Phi}}$  берется со знаком плюс, а  $_{\delta_{H}}$  – со знаком минус.

Приведенные погрешности  $\delta_o$  и  $\delta'_{lo}$  не должны быть более  $\pm 10$  %,  $\pm 4$  % и  $\pm 2,5$  % соответственно для диапазонов измерений 0-1, 1-10, 10-100 и 100-1000 млн<sup>-1</sup>.

- 6.9.1.1. Определение приведенной погрешности  $^{\delta}$   $_{\rm I_0}$  и  $^{\delta'}$  выполните в следующей последовательности:
- а) подключите к разъему «ВЫХОД» жгут № 2, а к наконечникам 1,2 жгута подключите миллиамперметр постоянного тока с диапазоном

измерений 0-20 мА, причем к наконечнику 1 подключите плюсовую клемму миллиамперметра;

- б) подключите к разъему «К ДАТЧИКУ» жгут № 1, а к наконечникам 1,3 жгута подключите последовательно соединенные магазины сопротивлений Р33 и Р4002 и многопредельный миллиамперметр постоянного тока;
- в) установите сетевой тумблер в положение «СЕТЬ», при этом должно включиться цифровое табло;
- г) с помощью магазинов сопротивлений по показаниям цифрового табло последовательно установите значение ОДВ  $(0,75\pm0,05)$ ,  $(7,5\pm0,5)$ ,  $(25\pm5)$ ,  $(75\pm5)$ ,  $(750\pm5)$ ,  $(750\pm5)$  млн<sup>-1</sup>;
- д) при каждом установленном значении ОДВ производите отсчет следующих показаний:
  - 1) цифрового табло (B<sub>г</sub>, млн<sup>-1</sup>);
- 2) миллиамперметра, подключенного к наконечникам 1,3 жгута № 1 (I<sub>D</sub>, мкА);
- 3) миллиамперметра, подключенного к наконечникам 1,2 жгута № 2 (I<sub>вых</sub>, мА);
- е) рассчитайте значение объемной доли влаги (В, млн<sup>-1</sup>)для каждого установленного значения миллиамперметра, подключенного к наконечникам 1,3 жгута № 1 по формуле:

$$B = 7,479 \cdot 10^{-2} I_{p} \tag{6}$$

где  $7,479\cdot10^{-2}$  – множитель, обусловленный выбором единиц физических величин, млн<sup>-1</sup>/мкА.

по формулам (1), (2) рассчитайте значение ОДВ для каждого установленного значения миллиамперметра, подключенного к наконечникам 1,2 жгута № 2.

Приведенные погрешности  $\delta_{lo}$  (%) и  $\delta'_{lbbx}$ (%) рассчитайте по формулам:

$$\delta_{\text{Io}} = \frac{B_{r} - B}{B_{H}} \cdot 100 \tag{7}$$

$$\delta'_{\text{IBMX}} = \frac{B_{\text{BMX}} - B}{B_{\text{H}}} \cdot 100 \tag{8}$$

Приведенные погрешности  $\delta_{lo}$  и  $\delta'_{lвых}$  не должны быть более  $\pm 2,5$  %;  $\pm 1,0$  %;  $\pm 0,75$  % и  $\pm 0,75$  %, соответственно для диапазонов измерений ОДВ 0-1, 1-10, 10-100 и 100-1000 млн<sup>-1</sup>.

6.9.1.2. Для определения приведенной погрешности  $\delta_Q$  гигрометра обусловленной отклонением расхода газа через чувствительный элемент от номинального значения включите в работу на анализируемом газе с

ОДВ 0-1000 млн<sup>-1</sup>.Подсоедините устройство для измерений расхода газа УИРГ-2A к штуцеру «ВЫХОД ГАЗА».

Измерьте расход газа через чувствительный элемент и приведите его к нормальным условиям (температура окружающего воздуха плюс 20°С и атмосферное давление 101,3 кПа (760 мм рт. ст.)) в соответствии с 5К0.283.000ДА, а для датчиков на разрежение подключите УИРГ-2Р и измерьте расход, как указано в приложении А.

Определите приведенную погрешность  $\delta_{Q}$ , % по формуле:

$$\delta_{Q} = \frac{Q_{0} - Q_{H}}{Q_{H}} \cdot 100$$
 (9)

где  $Q_0$  – расход газа через чувствительный элемент, приведенный к нормальным условиям, см<sup>3</sup>/мин;

Q<sub>н</sub> – номинальный расход газа через чувствительный элемент при нормальных условиях, равный 100 см<sup>3</sup>/мин.

Приведенная погрешность  $\delta_Q$ , обусловленная отклонением расхода газа через чувствительный элемент от номинального значения не должна быть более  $\pm 1,0$  %.

- 6.9.1.3. Определение приведенной погрешности  $\delta_{\mbox{\tiny H}}$  выполняют в следующей последовательности:
  - а) подключите к разъему «К ДАТЧИКУ» жгут № 1;
- б) подключите между наконечником 1 жгута и клеммой 1 чувствительного элемента многопредельный миллиамперметр постоянного тока с диапазоном измерений 0-15 мА;
- в) подключите между наконечником 2 жгута и клеммой 2 чувствительного элемента миллиамперметр постоянного тока с диапазоном измерений 0-1 мА;
- г) подключите наконечник 3 жгута к клемме 3 чувствительного элемента;
  - д) установите максимальные пределы измерения миллиамперметров;
- ж) подготовьте гигрометр к работе согласно руководству по эксплуатации;
- з) подайте на штуцер «ВХОД ГАЗА» анализируемый газ с ОДВ от 100 до 1000 млн<sup>-1</sup>;
- и) измерьте и установите через штуцер «ВЫХОД ГАЗА» номинальный расход газа;
- к) дождитесь установившихся показаний миллиамперметров и производите их отсчет.

Приведенную погрешность  $\delta_{H}$ , % рассчитайте по формуле:

$$\delta_{\rm H} = -15 \frac{I_{\kappa}'}{I_0} \tag{10}$$

где I,  $I_0$  — соответственно, показания миллиамперметров, подключенных к наконечникам 2 и 1, мкА;

15 – нормирующий множитель, %

Погрешность  $\delta_H$  не должна быть менее минус 0,75 %.

6.9.1.4. Для определения приведенной погрешности  $\delta_{\phi}$  подайте на штуцер «ВХОД ГАЗА» через осушитель (см. Приложение В) анализируемый газ, через 48 ч произведите отсчет показаний по цифровому табло, если показания менее 0,6 млн<sup>-1</sup> и имеют тенденцию к дальнейшему уменьшению, то примите максимальное значение  $\delta_{\phi}$  равное 5 % для диапазона измерений объемной доли 0-1 млн<sup>-1</sup>. Значения  $\delta_{\phi}$  для диапазонов 1-10, 10-100 и 100-1000 млн<sup>-1</sup> принимают равным и 1,0; 0,1 и 0,1 % соответственно.

6.9.1.5. Определение основной приведенной погрешности гигрометра  $\delta_{\circ}$  (%) и  $\delta'_{\circ}$  (%) комплектным методом производится с использованием образцового генератора влажного газа «РОДНИК-2» в качестве рабочего эталона, воспроизводящего ОДВ в анализируемых газах (азоте, воздухе, аргоне и других инертных газах).

Определение производится при любом одном значении ОДВ в области значений ОДВ от 800 до 950 млн $^{\text{-}1}$ . Для определения  $\delta_{\circ}$  и  $\delta'_{\circ}$  подготавливают генератор влажного газа «РОДНИК-2» (в дальнейшем генератор) и гигрометр «БАЙКАЛ-2ВМ» согласно эксплуатационной документации на эти изделия.

В термостате генератора устанавливают с помощью охлаждающей жидкости температуру от плюс 5 до плюс 7,5 °С (допускается добавлять в термостатирующую жидкость мелко раздробленный лед).

Определение  $\delta_{\circ}$  и  $\delta'_{\circ}$  производите в следующей последовательности:

- штуцер «ВХОД ГАЗА» гигрометра подсоедините с помощью трубки из стали 12X18H10T диаметром 3 мм к штуцеру «К ВНЕШНЕМУ ВЛАГОМЕРУ» генератора;
- подайте на штуцер «ВХОД ГАЗА» генератора анализируемый газ под давлением от 1,0 до 2,0 МПа (от 10 до 20 кгс/см²);
- включите гигрометр и генератор в работу согласно эксплуатационной документации на эти изделия;
- установите давление анализируемого газа в насытителе генератора в пределах от 0,9 до 1,0 МПа (от 9,0 до 10,0 кгс/см²);
- плавно открывая «ДРОССЕЛЬ ВЛАЖНЫЙ» генератора подайте анализируемый газ в гигрометр, контролируя расход с помощью устройства для измерения расхода газа по п. 2.2.9;
- при необходимости отрегулируйте расход в соответствии с п. 2.2.9;

- после установления неизменных показаний гигрометра В<sub>г</sub>, рассчитайте заданную ОДВ в газе В₃ по формуле 2 паспорта генератора;
- определите основную приведенную погрешность гигрометра по формулам:

$$\delta_{\rm o} = \frac{{\rm B_r} - {\rm B_3}}{{\rm B_m}} \cdot 100$$
 (11)

$$\delta'_{o} = \frac{B'_{r} - B_{3}}{B_{rr}} \cdot 100$$
 (12)

где B'<sub>г</sub> – ОДВ, определенная по выходному сигналу гигрометра в соответствии с формулами (1) или (2).

- 6.9.2 Определение погрешности срабатывания устройства сигнализации о превышении заданного значения ОДВ в анализируемом газе определите в следующей последовательности:
  - а) подключите к разъему «К ДАТЧИКУ» жгут № 1;
  - б) подключите к наконечникам 1,3 жгута магазин сопротивлений Р33;
  - в) установите максимальное значение магазина сопротивлений;
- г) подключите к контактам 9, 10 разъема «СИГНАЛИЗАЦИЯ» комбинированный прибор в режиме измерения сопротивления;
  - д) установите тумблер «УСТАВКА ЗОНЫ» в положение «1-10»;
- е) установите сетевой тумблер в положение «СЕТЬ», при этом должно включиться цифровое табло;
- ж) включите кнопку «УСТАВКА», и, удерживая ее во включенном состоянии, вращая ось резистора «ЗАДАТЧИК УСТАВКА», установите на цифровом табло значение объемной доли влаги 9 млн<sup>-1</sup>;
- з) увеличьте плавно с помощью магазина сопротивлений показания до включения сигнальной лампы «УСТАВКА» и замыкания контактов 9, 10 разъема «СИГНАЛИЗАЦИЯ»;
- и) определите показания цифрового табло, при котором произошли события предыдущей операции.

Погрешность срабатывания устройства сигнализации о превышении заданного значения ОДВ рассчитайте по формуле:

$$\delta_{\rm cp} = \frac{B_{\rm r} - B_{\rm y}}{B_{\rm u}} \cdot 100 \tag{13}$$

где  $\delta_{cp}$  – погрешность срабатывания устройства сигнализации, %;

- $B_r$  показания цифрового табло, при котором включилась сигнальная лампа «УСТАВКА», млн<sup>-1</sup>;
  - $B_v$  установленное по цифровому табло значение ОДВ, млн<sup>-1</sup>;

Далее аналогичным образом проверьте погрешность срабатывания устройства сигнализации в точках 90, 900 млн<sup>-1</sup>.

Погрешность  $\delta_{cp}$  не должна быть более  $\pm 5$  %.

- 6.9.3. Определение времени установления показаний T<sub>0,9</sub> выполните в следующей последовательности:
- а) подключите к штуцеру «ВХОД ГАЗА» механический поворотный кран (длина соединительной трубки от крана до штуцера «ВХОД ГАЗА» не должна быть более 100 мм);
- б) подключите к входным штуцерам крана два источника анализируемого газа. В качестве источника анализируемого газа может применяться генератор «РОДНИК-4», баллон с азотом или другие средства;
  - в) подключите к разъему «ВЫХОД» жгут № 2;
- г) подключите к наконечникам 1,2 жгута самопишущий миллиамперметр постоянного тока;
- д) включите гигрометр, самопишущий миллиамперметр и источник анализируемого газа в работу согласно их эксплуатационной документации;
- е) подайте на штуцер «ВХОД ГАЗА» анализируемый газ с ОДВ соответствующей первой четверти диапазона измерений и дождитесь установившихся показаний на диаграммной ленте самопишущего миллиамперметра;
- ж) подайте на штуцер «ВХОД ГАЗА» анализируемый газ с ОДВ соответствующей последней четверти диапазона измерений и включите секундомер;
- з) на диаграммной ленте самопишущего миллиамперметра делайте временные отметки на графике переходного процесса до установления показаний.

По записи изменения выходного сигнала гигрометра определите время установления показаний — время от момента изменения влажности до момента, когда изменение выходного сигнала гигрометра составит 90 % от полного изменения выходного сигнала. Аналогичное определение  $T_{0,9}$  проведите при обратном переключении гигрометра с большей влажности на меньшую.

Время установления показаний гигрометра не должно быть более 90, 15, 6 мин соответственно для диапазонов измерений 0-1, 1-10, 10-100, 100-1000 млн<sup>-1</sup>.

6.9.4. Проверку устройства сигнализации о диапазоне измерения ОДВ по выходному унифицированному сигналу проводите в следующей последовательности:

- а) подключите к разъему «К ДАТЧИКУ» жгут № 1;
- б) подключите к наконечникам 1,3 жгута магазины сопротивлений Р33 и Р4002;
- в) подключите к контактам 1,2 разъема «СИГНАЛИЗАЦИЯ» комбинированный прибор в режиме измерения сопротивления;
- г) установите сетевой тумблер в положение «СЕТЬ», при этом должно включиться цифровое табло;
- д) установите с помощью магазинов сопротивления показания цифрового табло 0,5 млн<sup>-1</sup>.

При установлении указанного значения должна замкнуться цепь между контактами 1,2 разъема «СИГНАЛИЗАЦИЯ». Состояние контактов (замкнуто – разомкнуто) проверьте комбинированным прибором в режиме измерения сопротивления.

Далее аналогичным образом установите последовательно показания цифрового табло 5, 50, 500 млн<sup>-1</sup>. Должны соответственно замкнуться цепь между контактами 3-4, 5-6 и 7-8 разъема "СИГНАЛИЗАЦИЯ".

- 6.9.5. Запись результатов поверки (калибровки) оформляется протоколом. Рекомендуемая форма протокола приведена в приложении Д.
- 6.9.6. Положительные результаты поверки следует оформить записью в таблице 9 настоящего руководства по эксплуатации. Запись удостоверяется подписью и клеймом поверителя, проводившего поверку (калибровку). При положительных результатах поверки должно быть оформлено свидетельство о поверке по формуле, приведенной в Правилах по метрологии ПР 50.2.006-94.
- 6.9.7. В случае получения отрицательных результатов поверки по поверки поверяемый какому-либо ПУНКТУ гигрометр признается В этом случае запись в таблицу непригодным. следует ввести настоящего руководства по эксплуатации И выдать извещение непригодности гигрометра к применению.
- 6.9.8. По результатам калибровки оформляется сертификат калибровки в произвольной форме с указанием действительных значений метрологических характеристик гигрометра.

#### 7. Гарантии изготовителя

- 7.1. Изготовитель гарантирует соответствие гигрометра требованиям нормативной документации при соблюдении потребителем условий эксплуатации, транспортирования, хранения, установленных настоящим руководством по эксплуатации.
- 7.2. Гарантийный срок эксплуатации 12 мес со дня ввода гигрометра в эксплуатацию.
- 7.3. Гарантийный срок хранения гигрометра 6 мес с момента приемки гигрометра ОТК предприятия-изготовителя.

7.4. Послегарантийный ремонт гигрометра осуществляется предприятием-изготовителем по отдельному договору.

### 8. Сведения о рекламациях

- 8.1. При получении неисправного гигрометра или гигрометра с неполным комплектом поставки Заказчик имеет право предъявить претензии предприятию-изготовителю или транспортному предприятию.
- 8.2. При получении гигрометра от транспортного предприятия должна быть проверена целостность тары и пломб. Тара гигрометра не должна иметь механических повреждений.
- 8.3. Оформление рекламаций должно проводиться установленным порядком и в установленные сроки в соответствии с Положением о промышленном предприятии.
- 8.4. При обнаружении неисправности составляется акт, в котором указывается характер неисправности. Акт подписывается комиссией, утверждается главным инженером предприятия-потребителя и направляется на предприятие-изготовитель.
  - 8.5. Реквизиты предприятия-изготовителя:

Россия 665821, Иркутская обл., г. Ангарск, мрн. Старо-Байкальск, ул. 2-ая Московская, строение 33а, ООО «Ангарское-ОКБА»

Email: mail@okba.ru Сайт: www.okba.ru

Контактные телефоны:

службы технической поддержки (3955) 50-77-85 или 507733, службы маркетинга и рекламы (3955) 50-77-58 или 50-77-37

# 9. Сведения о поверке (калибровке)

9.1. Поверка (калибровка) гигрометра производится в соответствии с разделом 6 настоящего руководства по эксплуатации. 9.2 Данные о поверке гигрометра вносятся в таблицу 9.

Таблица 9.

| Дата<br>поверки | Диапазон<br>измерений | Результат<br>поверки<br>годен или не<br>годен | Должность, фамилия представителя метрологической службы | Подпись дата и клеймо представителя метрологической службы |  |
|-----------------|-----------------------|-----------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|--|
|                 |                       |                                               |                                                         |                                                            |  |

# 10. Свидетельство о приемке

| 10.1. Гигрометр Байкал-2BM:                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| датчик на;                                                                                                                                            |
| выходной сигнал;                                                                                                                                      |
| анализируемый газ;                                                                                                                                    |
| максимальное входное давление;                                                                                                                        |
| минимальное входное давление ;                                                                                                                        |
| входное давление, при котором проведена настройка;<br>заводской №;                                                                                    |
| заводской №;<br>Соответствует техническим условиям <u>ТУ4215-033-00202904-02</u> и                                                                    |
| признан годным к эксплуатации.  Начальник ОТК                                                                                                         |
| Главный метролог                                                                                                                                      |
| Дата выпуска:                                                                                                                                         |
| М.П.                                                                                                                                                  |
| 11. Свидетельство об упаковывании                                                                                                                     |
| 11.1. Гигрометр Байкал-2ВМ (датчик на),                                                                                                               |
| заводской №, упакован предприятием-изготовителем согласно требованиям, предусмотренным ТУ 4215-033-00202904-02 и упаковочного чертежа 5К1.550.151 УЧ. |
| Упаковку произвел                                                                                                                                     |
| Дата упаковки                                                                                                                                         |
| М.П.                                                                                                                                                  |
| Гигрометр после упаковки принял представитель ОТК                                                                                                     |

# **П**риложение **A** (рекомендуемое)

# Методика выполнения измерений расхода газа с помощью устройства для измерений расхода газа УИРГ-2Р

### А.1. Устройство и метод измерения

А.1.1. Устройство УИРГ-2Р приведено на рисунке А.1. Бюретка 3 помещена в кожух 2 и соединена с тройником 4. К тройнику 4 подсоединены штуцеры 5 и 6. К штуцеру 5 через трубку подсоединен штуцер 7, к которому через трубку 8 подсоединяется вакуумметр. К штуцеру 6 через трубку 9 подсоединена колба 10, заполняемая мыльным раствором или раствором пеномоющего средства (далее ПМС). В пространство над раствором через подсоединяемую к газоподводящей линии с помощью гайки 11 и ниппеля 12 трубку подается газ. Над бюреткой 3 помещена камера 1. Снизу к камере 1 приварена трубка для слива мыльного раствора или раствора ПМС, закрывающаяся заглушкой 13 с прокладкой. К камере 1 приварен также штуцер, на который надевается трубка с гайкой 11 и ниппелем 12 для подсоединения к линии выхода газа.

При приподнимании колбы 10 часть раствора в виде пленки (пузырька) увлекается потоком газа и перемещается по бюретке.

измерения расхода A.1.2. Метод газа УИРГ-2Р С ПОМОЩЬЮ заключается в измерении времени прохождения пузырька контрольными отметками шкалы бюретки, через которую непрерывно подается измеряемый поток газа. Зная объем (V, см³), бюретки между контрольными отметками шкалы бюретки и время (т, с) прохождения пленки (пузырька) между ними, можно определить расход газа (Q, см<sup>3</sup>/мин), для условий измерения по формуле:

$$Q = \frac{V}{\tau}$$
 (A.1)

Для приведения расхода газа к нормальным условиям и введения поправок с целью исключения систематических составляющих погрешности необходимо дополнительно измерить атмосферное давление и температуру окружающего воздуха, после этого вычислить приведенный расход газа по формуле:

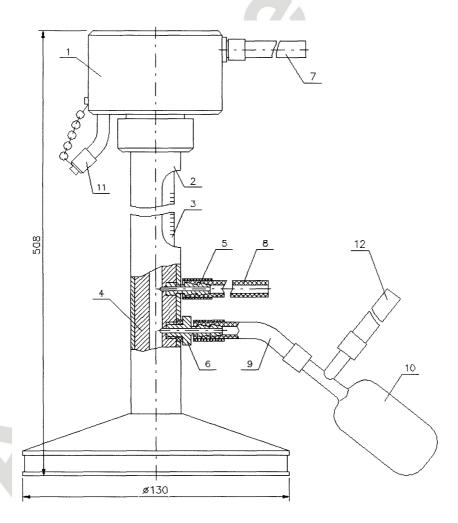
$$Q_0 = K \cdot k \cdot a \frac{V \cdot (P + \Delta P)}{(273.16 + t) \cdot \tau}, \qquad (A.2)$$

где  $Q_0$  – расход газа при температуре 20 °C и атмосферном давлении 101,325 кПа (760 мм рт. ст.), см<sup>3</sup>/млн;

- K коэффициент, обусловленный выбором единиц измерений давления и учитывающий нормальные условия, равный 23,1442  $\frac{c \cdot K}{MUH \cdot MM}$  рт. ст. и при выражении давления в мм рт. ст. и
- 0,1736  $\frac{c \cdot K}{\text{мин} \cdot \Pi a}$ , при выражении давления в Па;
- k поправочный коэффициент, учитывающий изменение объема газа за счет его увлажнения в УИРГ. Значения коэффициента в зависимости от температуры приведены в приложении I Аттестата 5К0.283.000 ДА;
- а коэффициент, учитывающий уменьшение вместимости бюретки за счет объема пленки раствора, покрывающий внутреннюю поверхность бюретки. Значения коэффициента приведены в табл. 2;
  - V объем бюретки между контрольными отметками шкалы, см³;
  - Р атмосферное давление, Па или мм рт. ст.;
  - t температура окружающего воздуха, °С;
- au время прохождения пленки между контрольными отметками шкалы бюретки (среднее значение трех-четырех измерений), с;
  - $\Delta P$  показания вакуумметра.

# А.2. Условия измерений

- А.2.1. Измерения допускается производить при температуре окружающего воздуха от плюс 5 до плюс 35  $^{\circ}$ С и атмосферном давлении от 84 до 106,6 кПа (от 630 до 800 мм рт. ст.).
- А.2.2. При измерении расхода газа не допускается образования более двух пузырьков.
- А.2.3. Не допускается производить измерение при наличии на стенках бюретки пены, пузырьков, а также во время стекания раствора по стенкам бюретки.


## А.3. Подготовка к измерению

- А.З.1. Перед проведением измерения тщательно промойте бюретку 3, тройник 4 и камеру 1.
- А.3.2. Приготовьте 10-15 % раствор ПМС или мыльный раствор. Для приготовления мыльного раствора 50 г измельченного в мелкую стружку бесщелочного мыла поместите в химический стакан вместительностью 500 мл и добавьте 300-350 мл дистиллированной воды. Стакан с

приготовленной смесью медленно нагрейте (не доводя до кипения) до полного растворения мыла при помешивании.

Дайте раствору остыть. Полученную густую массу можно хранить в закрытом сосуде в течение 3-4 мес. Перед употреблением из полученной массы приготовьте 5 % раствор. Навеску поместите в химический стакан вместимостью 300 л, добавьте дистиллированной воды, нагретой до плюс 50-60°С, перемешайте до полного растворения. При необходимости немного подогрейте. Кипятить разбавленный мыльный раствор не допускается.

- А.З.З. Заполните приготовленным раствором колбу 10. Трубку для слива раствора в нижней части камеры закройте герметично заглушкой 13 с прокладкой.
- А.3.4. Отсоедините трубку, соединенную со штуцером «ВЫХОД ГАЗА» датчика гигрометра, и тройника (из комплекта его монтажных частей). К штуцеру «ВЫХОД ГАЗА» датчика подсоедините трубку, соединенную с колбой 10, а к штуцерам тройника трубку, подсоединенную к камере 1 и трубку, подсоединенную к штуцеру «ВХОД» ПРГ (побудителя расхода газа).



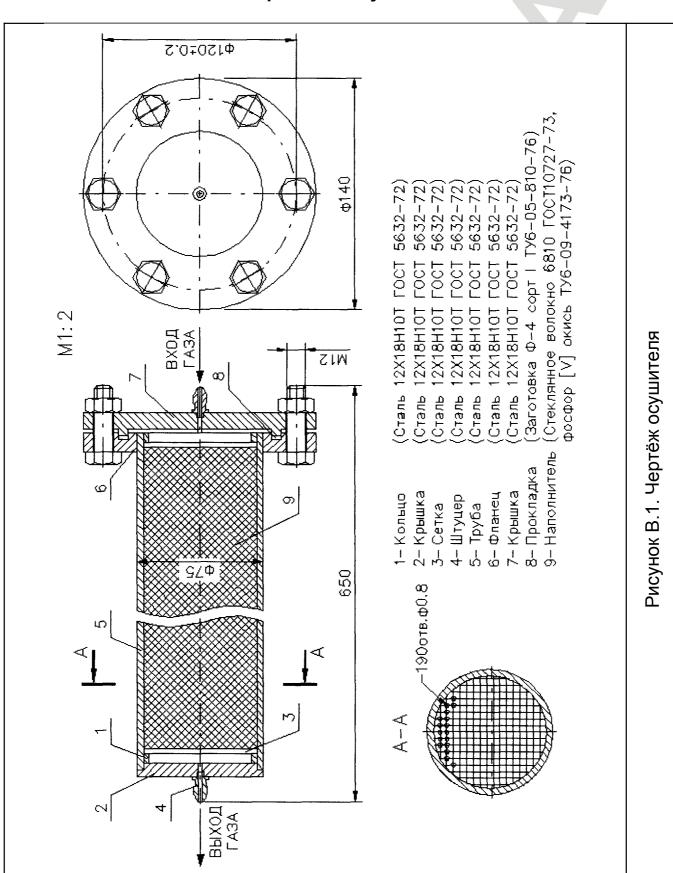
1 — камера; 2 — кожух; 3 — бюретка; 4 — тройник; 5, 6 — штуцеры; 7,8,9,12 — трубки; 10 — колба; 11 — заглушка.

Рисунок А.1. Устройство для измерения расхода газа УИРГ-2Р

### А.4. Выполнение измерения

А.4.1. Подключите гигрометр к сети переменного тока.

Подайте на штуцер «ВХОД ГАЗА» гигрометра анализируемый газ, а на штуцер «ВХОД ВОЗДУХА» побудителя расхода — сухой сжатый воздух. Приподнимая колбу 10, добейтесь образования серии пленок (пузырьков) для смачивания внутренней поверхности бюретки. Если кривизна пузырьков (определенная визуально) при прохождении нижней и верхней контрольных отметок шкалы бюретки одинаковые, то внутренняя поверхность бюретки считается нормально смоченной.


- А.4.2. Получите один пузырек и с помощью секундомера определите время прохождения пузырька между контрольными отметками шкалы бюретки. Пуск секундомера производить в момент прохождения пузырьком нижней контрольной отметки, а остановку в момент прохождения верхней контрольной отметки.
- А.4.3. При отсчете по бюретке глаз наблюдателя должен находиться на одном уровне с пузырьком.
- А.4.4. Время прохождения пузырька между контрольными отметками шкалы бюретки определите как среднее арифметическое из четырех-пяти измерений.
- А.4.5. Измерьте температуру окружающего воздуха и в документе «Устройство для измерений расхода газа типа УИРГ. Аттестат методики выполнения измерений расхода газа» 5КО. 283.000 ДА найдите соответствующие измеренной температуре значение коэффициента k.
- А.4.6. Вычислите расход газа приведенный к нормальным условиям по формуле (A.2).
- А.4.7. По окончании измерения снимите заглушку 13 и слейте из камеры 1 появившийся в ней раствор.

**П**риложение **Б** (рекомендуемое)

# Значения влажности газов в разных единицах измерений (+20 °C, 760 мм рт. ст.)

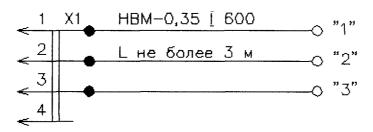
| Точка<br>росы, °С | млн <sup>-1</sup><br>(по объему) | MГ/M³   | Точка<br>росы, °С | млн <sup>-1</sup><br>(по объему) | MГ/M³  |
|-------------------|----------------------------------|---------|-------------------|----------------------------------|--------|
| - 110             | 0,00134                          | 0,001   | - 64              | 6,10                             | 4,56   |
| - 108             | 0,00238                          | 0,00178 | - 62              | 8,07                             | 6,04   |
| - 106             | 0,0037                           | 0,00277 | - 60              | 10,6                             | 7,925  |
| - 104             | 0,0057                           | 0,00426 | - 58              | 14,0                             | 10,480 |
| - 102             | 0,00855                          | 0,00640 | - 56              | 18,3                             | 13,69  |
| - 100             | 0,0130                           | 0,00973 | - 54              | 23,4                             | 17,5   |
| - 98              | 0,0197                           | 0,01474 | - 52              | 31,1                             | 23,32  |
| - 96              | 0,0290                           | 0,0217  | - 50              | 39,4                             | 29,50  |
| - 94              | 0,0434                           | 0,0325  | - 48              | 49,7                             | 37,19  |
| - 92              | 0,0632                           | 0,0518  | - 46              | 63,2                             | 47,2   |
| - 90              | 0,0923                           | 0,069   | - 44              | 80,00                            | 59,85  |
| - 88              | 0,134                            | 0,100   | - 42              | 101                              | 75,55  |
| - 86              | 0,184                            | 0,138   | - 40              | 127                              | 95,0   |
| - 84              | 0,263                            | 0,197   | - 38              | 159                              | 118,9  |
| - 82              | 0,382                            | 0,286   | - 36              | 198                              | 148,3  |
| - 80              | 0,526                            | 0,394   | - 34              | 246                              | 184,6  |
| - 78              | 0,747                            | 0,558   | - 32              | 340                              | 254,2  |
| - 76              | 1,01                             | 0,755   | - 30              | 376                              | 281,4  |
| - 74              | 1,38                             | 0,854   | - 28              | 462                              | 345,8  |
| - 72              | 1,88                             | 1,408   | - 26              | 566                              | 423,8  |
| - 70              | 2,55                             | 1,910   | - 24              | 691                              | 517,0  |
| - 68              | 3,44                             | 2,576   | - 22              | 841                              | 629,0  |
| - 66              | 4,60                             | 3,07    | - 20              | 1020                             | 763,0  |

# Приложение В (рекомендуемое) Устройство осушителя



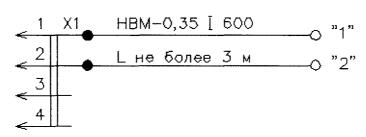
# Приложение Д (рекомендуемое)

# Форма протокола


| Город «_                                                                                    | 200 г.                      |
|---------------------------------------------------------------------------------------------|-----------------------------|
| ПРОТОКОЛ<br>поверки (калибровки) гигрометра БАЙ                                             | КАЛ-2ВМ                     |
| Заводской № Предприятие-изготовите                                                          | ель                         |
| Дата выпуска                                                                                |                             |
| дата поверки (калиоровки)                                                                   |                             |
| 1. Внешний осмотр и проверка комплектно соответствует (не нужное зачеркнуть) 2. Опробование | сти соответствует, не       |
| 2.1. Электрическое сопротивление изоляции                                                   |                             |
| 2.2. Герметичность газовой системы гигроме                                                  |                             |
| давлении кПа, спад давления за 15 мин _                                                     |                             |
| 2.3. Проверка функционирования гигрометра                                                   | – функционирует, не         |
| функционирует (ненужное зачеркнуть). 2.4. Проверка устройства сигнализации                  | 4 O HOMODOODHOOTH           |
| чувствительного элемента – функционирует, не фун                                            |                             |
| зачеркнуть).                                                                                | inductivipy of the fry inde |
| 2.5 Показание гигрометра при котором вкл                                                    | почается сигнальная         |
| лампа "ПЕРЕГРУЗКА" млн <sup>-1</sup> .                                                      |                             |
| 3. Значения метрологических характеристик                                                   |                             |
| 3.1. Значение основной приведенной погрешно                                                 | сти%                        |
| 3.1.1. Приведенная погрешности $\delta_{	ext{lo}}$ и $\delta'_{	ext{lвых}}$                 | %.                          |
| 3.1.2. Приведенная погрешность $\delta_{	exttt{Q}}$                                         | <u></u> %.                  |
| 3.1.3. Приведенная погрешность $\delta_{\Phi}$                                              | <u> </u>                    |
| 3.1.4. Приведенная погрешность δ <sub>н</sub>                                               |                             |
| 3.1.5. Основная приведенная погрешность опр                                                 |                             |
| образцового генератора влажного газа РОДНИК-2 _ 3.2. Погрешность срабатывания устройс       | %,                          |
| превышении заданного значения ОДВ в %.                                                      |                             |
| 3.3. Время установления показаний                                                           | мин.                        |
| 3.4. Проверка устройства сигнализации о диаг                                                | пазоне измерения ОДВ        |
| по выходному унифицированному сигналу                                                       | – соответствует, не         |
| соответствует (ненужное зачеркнуть).                                                        |                             |
|                                                                                             |                             |

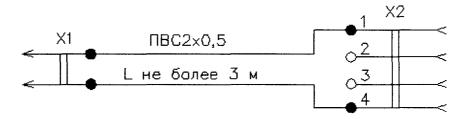
|                              |        | 5K1.550.151 |
|------------------------------|--------|-------------|
| 4. Заключение                |        |             |
| Поверитель                   | Ф.И.О. |             |
| подпись                      | Ф.И.О. |             |
| Оттиск поверительного клейма |        |             |
|                              | «»     | 200 r       |
|                              |        |             |
|                              |        |             |
|                              |        |             |
|                              |        |             |
|                              |        |             |
|                              |        |             |
|                              |        |             |
|                              |        |             |
|                              |        |             |
|                              |        |             |
|                              |        |             |
|                              |        |             |
| Z. O                         |        |             |
|                              |        |             |
|                              |        |             |

# Приложение Е (обязательное)


#### Схемы электрические жгутов

### Жгут N1




X1 — Вилка ОНЦ-РГ-09-4/18-В12 6РО.364.082 ТУ Концы проводов зачистить и облудить припоем. Способ маркировки по усмотрению потребителя

### Жгут N2



X1— Вилка ОНЦ-РГ-09-4/14-В12 бРО.364.082 ТУ Концы проводов зачистить и облудить припоем. Способ маркировки по усмотрению потребителя

#### Кабель "Сеть"



X1 - Вилка сетевая

Х2 - Розетка ОНЦ-РГ-09-4/14-Р12 бРО.364.082 ТУ

# ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

| Ne M3M. | №№ листов (страниц)  |                           |            |                               |                                          | Входящий №  |                                               |         |      |
|---------|----------------------|---------------------------|------------|-------------------------------|------------------------------------------|-------------|-----------------------------------------------|---------|------|
|         | изме-<br>нен-<br>ных | за-<br>ме-<br>нен-<br>ных | НО-<br>ВЫХ | анну-<br>лиро-<br>ван-<br>ных | Всего<br>листов<br>(страниц)<br>№ докум. | №<br>докум. | сопроводи-<br>тельного<br>документа и<br>дата | Подпись | Дата |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |
|         |                      |                           |            |                               |                                          |             |                                               |         |      |