ГЕНЕРАТОР ВЛАЖНОГО ГАЗА ОБРАЗЦОВЫЙ

РОДНИК-4

Паспорт 5К2.844.100 ПС

Содержание

1.	Назначение изделия	. 3
2.	Технические характеристики	3
3.	Комплектность	. 5
4.	Устройство и принцип работы	6
5.	Указания мер безопасности	. 25
6.	Общие указания	. 25
7.	Подготовка генератора к работе и порядок работы	28
8.	Техническое обслуживание	36
9.	Возможные неисправности и способы их устранения	. 42
10.	Свидетельство о приёмке	. 43
11.	Гарантии изготовителя	. 44
12.	Сведения о консервации и упаковке	. 44
13.	Сведения о рекламациях	. 44
14.	Данные аттестации увлажнителя	. 45
15.	Данные о поверке генератора	45
16.	Перечень приложений	. 45

1. НАЗНАЧЕНИЕ ИЗДЕЛИЯ

1.1. Генератор влажного газа образцовый РОДНИК-4 5К2.844.100 (далее генератор) представляет собой лабораторное стационарное непрерывно действующее динамическое устройство для получения парогазовой смеси с заданными значениями характеристик влажности. Генератор предназначается для градуировки и поверки гигрометров погружного и проточного типов на предприятиях, эксплуатирующих гигрометры, в лабораториях ведомственных метрологических служб. Кроме того, генератор может использоваться в исследовательских работах.

Генератор относится к образцовым средствам измерений второго разряда по ГОСТ 8.547-86.

- 1.2. Формулы, приведенные в настоящем паспорте и таблицы (Приложение 1) дают возможность рассчитать относительную влажность парогазовой смеси (далее ПГС) и объемную долю влаги (ОДВ) ПГС. В разделе 7 настоящего паспорта приведена методика перевода ОДВ ПГС в точку росы.
- 1.3. Генератор нормально работает при следующих рабочих условиях применения (эксплуатации):
 - температура окружающего воздуха от 15 до 25°C;
 - атмосферное давление от 84 до 107 кПа (от 630 до 803 мм рт. ст.);
 - относительная влажность окружающего воздуха не более 80%;
 - напряжение питания (220⁺²²-33) В частотой (50±1) Гц;
 - содержание агрессивных примесей и пыли в пределах санитарных норм.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 2.1. Питание генератора рабочим газом осуществляется от баллона или другого источника сжатого газа. Избыточное давление рабочего газ на входе в генератор в зависимости от требуемой влажности ПГС устанавливается в диапазоне от 3 кПа до 1,0 МПа (от 0,03 до 10 кгс/см²).
- 2.2. В качестве рабочего газа применяют азот ГОСТ 9293-74, аргон ГОСТ 10157-79, гелий газообразный ТУ6-51-940-80, неон технический ТУ6-21-4-76, воздух ГОСТ 24484-60.
- 2.3. Рабочий газ не должен содержать механических загрязнений более 2 мг/м³ (пыль, окалина, масла, сажа и др.), конденсата,паров и аэрозолей, вызывающих коррозию стали I2X18H10T.
- 2.4. В генератор подается охлаждающая жидкость в случае термостатирования его пневмогидравлической системы при температуре ниже или незначительно превышающей температуру окружающего воздуха. Температура термостатирования в этом случае устанавливается не менее чем на 2°C выше температуры охлаждающей жидкости.

В качестве охлаждающей жидкости может использоваться холодная вода водопроводной сети.

2.5. Диапазон воспроизводимой генератором объемной доли влаги ПГС от 10 до 460000 млн $^{-1}$, диапазон воспроизводимой генератором относительной влажности ПГС от 10 до 98% при температуре от 15 до 80°C.

Примечания:

- 1. Указанные наименьшее значение температуры и наименьшее значение ОДВ получаемой ПГС обеспечиваются при условии подачи в генератор охлаждающей жидкости.
- 2. Наибольшее значение ОДВ ПГС обеспечивается наибольшим значением температуры термостатирования. пневмогидравлической системы генератора.
- 3. Наименьшее значение относительной влажности и ОДВ обеспечивается возможностью задания и измерения давления газа в насытителе 1 МПа (10 кгс/см²).
- 2.6. Метрологические характеристики генератора обеспечиваются при расходе получаемой ПГС от 0,1 до 1 л/мин. При получении ПГС с относительной влажностью более 97% расход ПГС не менее 0,5 л/мин.
- 2.7. Избыточное давление ПГС на выходе генератора штуцер К ВНЕШНЕМУ ГИГРОМЕТРУ устанавливается в пределах от 0,001 до 1 МПа (от 0,01 до 10 кгс/см²), но не выше давления газа в насытителе. При ОДВ ПГС 460000 млн⁻¹ избыточное давление ПГС на выходе генератора устанавливается не более 2 кПа (0,02 кгс/см²).
- 2.8. Пределы допускаемой относительной погрешности генератора при воспроизведении объемной доли влаги ПГС:
 - ±2,5% в диапазоне от 10 до 1700 млн⁻¹ (режим 2 работы генератора);
 - ±1,5% в диапазоне от 1700 до 460000 млн⁻¹ (режим 1 работы генератора).
- 2.9. Пределы допускаемой абсолютной погрешности генератора при воспроизведении относительной влажности ПГС $-\pm 1,0\%$.

Таблицы рассчитанных пределов допускаемых абсолютной и относительной погрешностей генератора для конкретных условий его работы приведены в Приложении 2.

- 2.10. Генератор обеспечивает получение осушенного газа с ОДВ не более 0.5 млн^{-1} при расходе газа до 1.5 л/мин и давлении газа на выходе генератора до 0.9 МПа.
- 2.11. Влажность ПГС стабильна. Пределы допускаемых изменений влажности ПГС в течение 8 ч работы двум пределам допускаемой погрешности.
- 2.12. Время установления заданной температуры термостатирования пневмогидравлической системы генератора при изменениях температуры от 20 до 80°C и от 80 до 20 не более 2,5 ч.

- 2.13. Предел (T_{0,95}) допускаемого времени установления задаваемой относительной влажности ПГС в рабочей камере при температуре пневмогидравлической системы (20±1)°С не более 30 мин.
- 2.14. В генераторе обеспечена возможность задания температуры термостатирования, измерения и индикации текущего значения температуры пневмогидравлической системы в диапазоне от 15 до 80°С. Пределы допускаемой абсолютной погрешности генератора при задании и измерении текущего значения температуры ±0,5°С.
 - 2.15. Мощность, потребляемая генератором, не более 1,0 кВА.
- 2.16. Масса генератора (без термостатирующей жидкости, комплекта запасных частей и самостоятельных комплектующих изделий, не встраиваемых в генератор при его работе) не более 40 кг.
 - 2.17. Габаритные размеры генератора не более 530×470×430 мм.
 - 2.18. Средний срок службы генератора не менее 8 лет.
 - 2.19. Средняя наработка генератора на отказ не менее 10000 ч.
- 2.20. По защищенности от воздействия окружающей среды генератор имеет исполнение, защищенное от попадания внутрь изделия твердых тел (степень защиты IP20 по ГОСТ 14254-80).

Генератор выполнен в климатическом исполнении УХЛ категории размещения 4 по ГОСТ 15150-69, при этом температура окружающего воздуха должна быть от 15 до 25°C.

- 2.21. Сведения о содержании драгоценных металлов:
- золото 0,0104589 г;
- серебро 0,10908 г.

3. КОМПЛЕКТНОСТЬ

- 3.1. В комплект поставки генератора должны входить:
- методика поверки 5К2.844.100 ДП...... 1 шт.;
- свидетельство о государственной поверке генератора...... 1 шт.;
- комплект запасных частей, комплект принадлежностей и комплект монтажных частей согласно табл.1.....по 1 комплекту.

Таблица 1.

Обозначение	Наименование	Кол-во
	Комплект запасных частей 5К4.070.160	
5K8.390.007	Ремень приводной	3
5K8.684.433	Прокладка	6
5K8.684.433-01	Прокладка	2
5K8.684.466	Кольцо уплотнительное	2
H5K8.683.622-14	Прокладка	2
H5K8.684.346-13	Кольцо 009-012-19-26 ГОСТ 9833-73	4
	Вставка плавкая ВП1-1-5А АГО.481.303ТУ	4
	Комплект принадлежностей 5К4.072.078	
	Термометр ТЛ-4 №2 ТУ25-2021.003-88	1
	Термометр ТЛ-4 №3 ТУ25-2021.003-88	1
5К1.550.130ТУ	Кулонометрический гигрометр «Байкал-5Ц» исп.2	1
	Комплект монтажных частей 5К4.075.083	
5K6.452.296-20	Трубка L=1000 мм	4
5K6.644.022	Кабель СЕТЬ	1

Примечания:

- 1. Термометры и манометры, входящие в комплект принадлежностей, должны комплектоваться паспортами и свидетельствами о государственной поверке со сроком действия не менее половины межповерочного интервала.
- 2. Составные части комплекта принадлежностей допускается менять на аналогичные, обеспечивающие те же технические характеристики.

4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

4.1. Принцип действия генератора при работе в режиме 1 заключается в насыщении газа влагой при повышенной давлении и стабильной температуре с последующим изотермическим понижением давления до рабочего давления первичных преобразователей влажности (метод двух давлений). Этот принцип основан на том, что давление насыщенного водяного пара в диапазоне выбранных давлений газа в насытителе зависит практически только от температуры.

Относительная влажность газа в насытителе при любом давлении и обеспечивается равной 100%, температуре а ОДВ определяется температурой термостатирования насытителя и давлением газа в нем. газа И3 насытителя его объем увеличивается пропорционально понижению давления, а относительная влажность в той мере уменьшается. ОДВ при понижении давления газа после насытителя остается неизменной и равна исходному ее значению в насытителе.

Таким образом, чем выше давление газа в насытителе, тем ниже относительная влажность и ОДВ ЛГС в рабочей камере и на выходе из генератора.

При работе генератора в режиме 1 получают ПГС с относительной влажностью в диапазоне от 10 до 98% при температуре от 15 до 80°С и с ОДВ в диапазоне от 1700 до 460000 млн $^{-1}$.

4.2. Расчет относительной влажности (ф, %) ПГС производится по формуле:

$$\varphi = \frac{(P_a + \Delta P)Z_K}{(P_H + P_a)Z_H} \cdot 100,$$

где P_a – атмосферное давление, кПа (кгс/см²);

 ΔP – избыточное давление газа в рабочей камере, кПа (кгс/см²);

Р_н - избыточное давлению газа в насытителе, кПа (кгс/см²);

 Z_{κ} , Z_{H} — коэффициент, обусловленный отклонением свойств реального газа от свойств идеального газа для разных значений давления и температуры газа, соответственно, в рабочей камере и в насытителе; 100 — коэффициент, обусловленный выбором единицы относительной влажности, %.

Примечания:

- 1. Таблица перевода атмосферного давления мм рт. ст. в кгс/см² приведена в Приложении 3.
- 2. Значения коэффициента Z для разных условий (давление и температура газа в насытителе P и T) приведены в Приложении 4.
- 4.3. Расчет объемной доли влаги (В, млн⁻¹) ПГС производится по формуле:

$$B = P_0 \frac{B_{nt} \cdot Z_0}{(P_n + P_a)Z_n}, \tag{4.2.}$$

где P_0 – нормальное атмосферное давление, равное 101,325 кПа (1,033 кгс/см²);

- В_{нт} табличное значение ОДВ в состоянии насыщения для температуры термостатирования насытителя, млн⁻¹ (см. таблицу 1 приложения 1);
- Z_0 коэффициент, обусловленный отклонением свойств реального газа от свойств идеального газа для атмосферного давления 101,3 кПа (760 мм рт.ст.).
- 4.4. Принцип действия генератора работающего в режиме 2 заключается в увлажнении газа при повышенном давлении и стабильной температуре с последующим изотермическим понижением давления до рабочего давления преобразователей влажности.

В зависимости от количества продозированной воды для увлажнения пористого адсорбента, температуры увлажнителя и давления газа в нем воспроизводятся разные значения ОДВ ПГС при пропускании газа через увлажнитель.

В качестве пористого адсорбента используется цеолит марки A (NaA). ОДВ ПГС (B, млн⁻¹) в этом случае рассчитывается по формуле:

$$B = \frac{P_0 \cdot B_{nt} \cdot K}{P_y + P_a}, \tag{4.3.}$$

где B_{Ht} — табличное значение ОДВ насыщения (над водой) для температуры увлажнителя, млн⁻¹;

 P_y – избыточное давление газа в увлажнителе, кПа (кгс/см²);

К – понижающий коэффициент, характеризующий равновесное парциальное давление паров воды над увлажненным пористым адсорбентом, численно равен доле от парциального давления водяных паров над чистой ровной поверхностью воды в равных внешних условиях (абсолютном давлении газа и температуре воды и сорбента (цеолита) в увлажнителе). Коэффициент К зависит от степени увлажнения адсорбента, его температуры и давления увлажняемого газа.

Коэффициент определяют с помощью кулонометрического гигрометра экспериментально после каждого перезаполнения увлажнителя по формуле:

$$K = \frac{B_{\Im}}{B\mu_{2}o}, \qquad (4.4.)$$

где Вэ – экспериментально полученная влажность (ОДВ) ПГС, измеряемая высокоточным гигрометром, млн⁻¹;

Вн $_2$ о — ОДВ рассчитанная (формула 4.2.) по водяному насытителю для давления газа и температуры увлажнителя, при которых измерена Вэ, млн $^{-1}$.

По формуле 4.3. расчет ОДВ ПГС проводят в течение сравнительно небольшого времени после заполнения и аттестации увлажнителя. После некоторого времени работы с увлажнителем, особенно после получения больших значений ОДВ, понижающий коэффициент К изменяется. Это обусловлено тем, что влагоёмкость увлажнителя ограничена его массогабаритными характеристиками. По мере расходования воды из увлажнителя коэффициент К уменьшается. Формулой 4.3. удобно пользоваться для ориентировочных расчетов. ОДВ ПГС при выборе режима работы (Р и Т) увлажнителя.

Для более точной аттестации ПГС по ОДВ необходимо использовать кулонометрический гигрометр.

Для аттестации ПГС на выходе генератора по ОДВ в комплект принадлежностей генератора введен кулонометрический гигрометр БАЙКАЛ 5Ц (далее гигрометр).

Гигрометр подключают параллельно поверяемому гигрометру и, после установления постоянных показаний последнего, измеряют ток электролиз кулонометрического чувствительного элемента (далее КЧЭ) I (мкА) внешним высокоточным микроамперметром типа М1109, М2020 и др. с классом точности 0,2, атмосферное давление (P_a ,кПа или мм рт. ст.), температуру окружающего, воздуха (T, K), расход газа через КЧЭ (Q, см³/мин, для условий измерений).

Расход газа измеряют с помощью устройства для измерений расхода газа УИРГ-2A (входящего в комплект принадлежностей) по методике выполнения измерений 5К0.283.000 ДА.

ОДВ ПГС рассчитывают по формуле:

$$B = \frac{b \cdot I \cdot T}{Q \cdot P_a}, \tag{4.5.}$$

где b — коэффициент, обусловленный выбором единиц физических величин, b = 19,39, $\frac{MJH^{-1} \cdot CM^3 \cdot MMPM.CM.}{MKA \cdot K \cdot MUH}$ или b = 2,58, $\frac{MJH^{-1} \cdot CM^3 \cdot K\Pi a}{MKA \cdot K \cdot MUH}$

4.5. Описание работы пневмогидравлической системы генератора

4.5.1. При работе генератора в режиме 1 или 2 газ от источника сжатого газа (на черт.5К2.844.100 X3 не показан) поступает соответственно на штуцер генератора ВХОД ГАЗА 1 или ВХОД ГАЗА 2 под стабилизируемым давлением от 0,005 до 1 МПа в зависимости от воспроизводимой влажности, проходит насытитель НС или увлажнитель У, вентиль В1 или В2, переменный дроссель ДР (влажный газ) и поступает к штуцеру К ВНЕШНЕМУ ГИГРОМЕТРУ или через вентиль В3 (отсекатель камеры) в рабочую камеру К с первичными преобразователями влажности. Далее через конденсатоотводчик В0 и ротаметр Р в дренажную линию через штуцер ВЫХОД ГАЗА.

В случае необходимости получения на выходе генератора или в рабочей камере осушенного газа, газ от источника сжатого газа поступает на штуцер ВХОД ГАЗА 3, проходит через осушитель ОС, вентиль В4 и дроссель ДР.

4.5.2. В схему генератора не введены стабилизаторы (редукторы) давления газа. Такое решение обусловлено необходимостью уменьшения массогабаритных характеристик генератора.

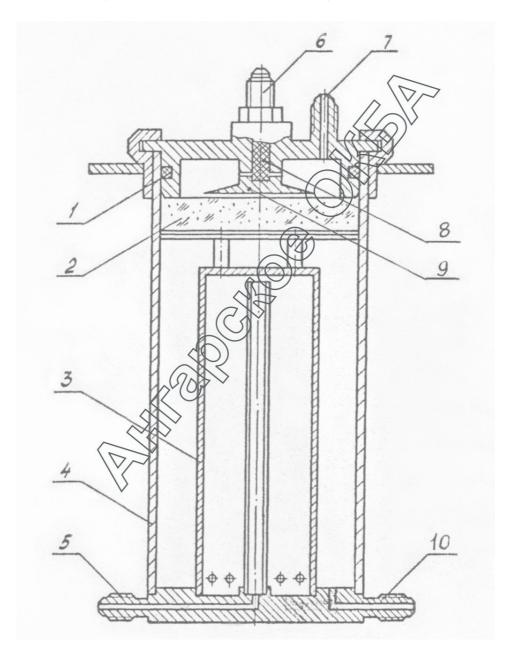
При эксплуатации генератора у потребителя для стабилизации давления в диапазоне от 0,15 до 1 МПа рекомендуется использовать серийные баллонные редукторы типа БКО-50, БКД-25 по ГОСТ 13861-89 и в диапазоне от 5 кПа до 0,15 МПа — РДВ-5М ТУ25-04-2719-78. Выбранные редукторы обеспечат получение в генераторе ПГС с заданной стабильностью.

4.5.3. Насытитель НС (рис. 1) предназначен для насыщения влагой потока газа (режим работы 1).

Насытитель представляет собой сосуд из нержавеющей стали в виде двух (внешнего 4 и внутреннего 3) совмещенных и сообщающихся посредством распылителя коаксиальных цилиндров заполненных водой до определенного уровня. Распылитель выполнен в виде цилиндра с радикальными отверстиями диаметром 0,7 мм, расположенных равномерно по диаметру внутреннего цилиндра в нижней его части. Он служит для дробления потока газа на отдельные пузырьки диаметром 1-2 мм.

Рабочий газ под давлением подается в насытитель через входной штуцер 5, вытесняет воду через отверстия распылителя из полости внутреннего цилиндра во внешний, барботирует через столб воды, проходит фильтры 2 и 8 и выходит через штуцер 6. При барботировании газ увлажняется до насыщения (до 100% относительной влажности).

Фильтры 2 и 8 и брызгоотделитель 9 служат для улавливания и отделения капель воды от потока газа. Кроме того, фильтры являются дополнительными увлажнителями газа с большой активной поверхностью.


Боковой штуцер 7 на крышке насытителя предназначен для подключения манометра. Штуцер 10 на дне насытителя предназначен для залива и слива воды из насытителя.

С целью минимизации массогабаритных параметров насытителя оптимальное время непрерывной работы генератора, расход ПГС и, соответственно, количество воды необходимой на насыщение этого потока газа определены с учетом назначения данного генератора: время непрерывной работы генератора 6 ч, при максимальном расходе ПГС 1 л/мин.

В таблице 2 приведены результаты расчета количества воды для различных режимов работы генератора с учетом коэффициента запаса $\gamma = 1,5$ и выбранных исходных данных (8 ч). По данным таблицы 2 конструкция насытителя рассчитана на 100 г воды.

В таблице 3 приведены результаты расчета времени непрерывной работы генератора при получении ПГС с относительной влажностью 100% при условии, что в насытителе 100 г воды.

В конструкции насытителя применено байонетное соединение для фиксации крышки насытителя к кожуху. Настоящая конструкция обеспечила быстроту разборки насытителя и уменьшение его массы.

1 — уплотнительное кольцо; 2 — фильтр (стеклянная насадка); 3 — внутренний цилиндр; 4 — внешний цилиндр; 5 — штуцер вход газа; 6 — штуцер выход газа; 7 — штуцер для подключения манометра; 8 — фильтр (ткань Петрянова); 9 — брызгоотделитель; 10 — штуцер для залива и слива воды.

Рисунок 1. Насытитель.

Таблица 2.

Температура	Влажность насыщения, г/м³	Масса воды (г) при расходе ПГС (л/мин)				
насытителя, °С		0,2	0,5	0,75	1,0	1,5
20	17,30	2,60	6,50	9,75	13,00	20,00
40	51,15	7,68	19,20	28,80	38,40	57,60
60	130,20	19,54	48,85	73,28	97,70	146,60
80	293,4	44,0	110,0	165,0	220,0	330,0

Таблица 3.

Температура насытителя,	Время непрерывной работы генератора (ч) при расходе ПГС (л/мин)						
°C	0,2	0,5	0,75	1,0	1,5		
20	320,0	128,0	85,0	64,0	42,0		
40	108,0	43,0	29,0	21,5	14,5		
60	43,0	17,0	11,0	8,5	5,6		
80	19,0	7,6	5,0	4,0	2,5		

При барботировании газа высота столба воды с пузырьками газа в зазоре между цилиндрами увеличивается, а удельная площадь теплообмена возрастает.

Наиболее трудный режим работы генератора — термостатирование его газовой системы при 80°С. При этой температуре происходит интенсивное испарение воды для насыщения газа (0,2934 г воды на каждый литр насыщаемого газа) с соответствующим понижением температуры ПГС. Для повышения надежной работы генератора в таких условиях, то есть исключения понижения температуры ПГС, необходимо уменьшить расход газа через насытитель до значения 0,4 л/мин, при котором испарение воды и, соответственно, понижение температуры незначительно. В таком режиме площади теплообмена насытителя достаточно для поддержания постоянной температуры воды в нем.

4.5.4. Увлажнитель У (рис. 2) предназначен для увлажнения потока газа до заданного значения ОДВ. Конструктивно он выполнен в виде U – образной трубки из нержавеющей стали. Подвод газа и отвод ПГС осуществляется через боковые штуцера (5 и 2). Подключение манометра производится через штуцер 1 на выходе увлажнителя.

Увлажнитель заполняется цеолитом 4 (цеолит увлажнен дозированным количеством воды) до уровня, обеспечивающего возможность установки на входе и выходе увлажнителя фильтра 3 из ткани Петрянова. Фильтр предотвращает вынос пылинок цеолита в газовый канал.

Торцы U – образней трубки герметично заглушаются.


Для обеспечения стабильности и воспроизведения получаемых значений ОДВ ПГС необходимо строго соблюдать методику подготовки цеолита при увлажнении его дозированным количеством воды. Причем и размер дозы воды необходимо знать для получения заданного значения ОДВ ПГС.

Методика подготовки и увлажнения цеолита подробно изложена в разделе 8 настоящего паспорта.

Экспериментально определена зависимость ОДВ ПГС от степени увлажнения цеолита (массовая доля воды в цеолите – МДВ, %) и приведена на рис. З для температуры увлажнителя 20°С и давления газа в нем 1,0 МПа (10 кгс/см²).

Как показывает практика, тщательность проведения технологических операций при подготовке цеолита определяет воспроизводимость (разброс точек на кривой) задаваемой ОДВ в стандартных условиях $(t_y = 20^{\circ}\text{C}, P_y = 1,0 \text{ M}\Pi a)$.

Используя данные графика, можно изменять начальную ОДВ для стандартных условий. Наиболее просто и надежно воспроизводится ОДВ в пределах от 5 до 11 млн⁻¹. Получить ПГС с ОДВ 1-2 млн⁻¹ сложнее.

1 — штуцер для подключения манометра; 2 — штуцер выхода ПГС; 3 — фильтр из ткани Петрянова; 4 — увлажнённый цеолит; 5 — штуцер для подвода газа; 6 — корпус из нержавеющей стали.

Рисунок 2. Увлажнитель.

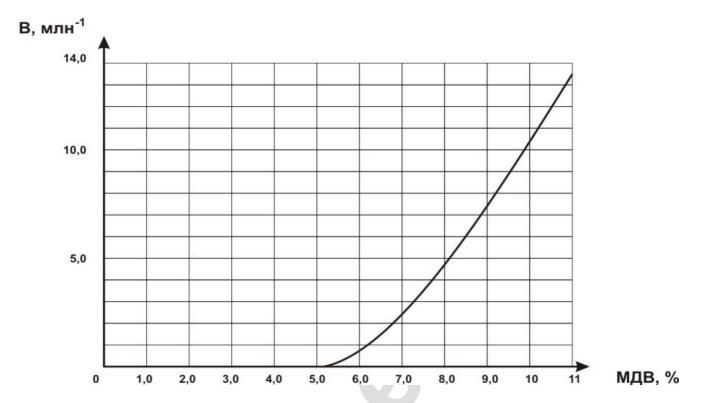


Рисунок 3. Зависимость ОДВ ПГС от степени увлажнения цеолита.

Диаметр и длина увлажнителя подобраны таким образом, чтобы обеспечить длительную (в течение более 8 ч) стабильность воспроизводимо ОДВ ПГС. Стабильность ОДВ ПГС определяется в основном внешними для увлажнителя условиями, то есть давлением газа в увлажнителе, его температурой, атмосферным давлением и т.п.

Чрезвычайно развитая поверхность цеолита (более 700 м²/г) обеспечивает постоянное поддержание равновесного парциального давления водяного пара. Это свойство цеолита позволяет значительно упростить эксплуатацию увлажнителя. Воспроизводимая ОДВ ПГС практически не зависит не только от времени работы увлажнителя (в пределах 8-20 ч), но и от изменения расхода газа через него, а также от влажности газа подаваемого на вход увлажнителя.

ОДВ ПГС на выходе увлажнителя может оперативно изменяться простым изменением давления в увлажнителе, при этом получаемая ОДВ изменяется обратно пропорционально давлению практически в соответствии с методом двух давлений.

ОДВ ПГС при изменении давления газа в увлажнителе рассчитывается по формуле:

$$Bp_{y} = Bp_{1} \frac{P_{1}}{Pv},$$
 (4.6.)

где $Bp_y - OДВ$ ПГС при абсолютном давлении газа в увлажнителе равном $Py, млн^{-1}$;

 $Bp_1 - OДВ$ ПГС при абсолютном давлении газа в увлажнителе равном P_1 ,млн⁻¹;

 P_1 — абсолютное давление газа в увлажнителе, при котором определена ОДВ ПГС равная Bp_1 , МПа (кгс/см²);

 P_y – абсолютное давление газа в увлажнителе, при котором требуется определить ОДВ, МПа (кгс/см²);

Зависимость ОДВ ПГС на выходе увлажнителя от его температуры исследована для нескольких заполнений увлажнителя цеолитом, увлажненным разными дозами воды. Характер этой зависимости для разных заполнений одинаков, но разный по абсолютным значениям аргумента для одного и того же значения функции. Это обусловлено разными значениями начальной ОДВ ПГС при стандартных условиях.

Для упрощения эксплуатации увлажнителя (генератора) на рис. 4 и 5 приведен усредненный график зависимости ОДВ ПГС на выходе увлажнителя от температуры. График приведен в относительной форме в виде зависимости условного коэффициента β от температуры. Коэффициент β рассчитан по формуле:

$$\beta = \frac{B_t}{B_{20}},\tag{4.7.}$$

где B_t – значение ОДВ ПГС при температуре увлажнителя, для которой определяется β , млн⁻¹;

 B_{20} — значение ОДВ ПГС при температуре увлажнителя равной 20°C, млн⁻¹.

Графиками приведенными на рис. 4 и 5 (на рис. 5 более крупный масштаб) пользуются для выбора температуры термостатирования увлажнителя при получении ПГС с требуемой ОДВ.

На рис. 6 приведен график зависимости условного коэффициента от температуры. Коэффициент α рассчитан по формуле:

$$\alpha = \frac{K_t}{K_{20}}, \qquad (4.7.)$$

где K_t – понижающий коэффициент (см. формулу 4.3.) при температуре увлажнителя, для которой определяется α ;

 K_{20} – понижающий коэффициент при температуре увлажнителя равной $20^{\circ}C$.

Это график используется для определения понижающего коэффициента при расчёте ориентировочного значения ОДВ ПГС по формуле (4.3.).

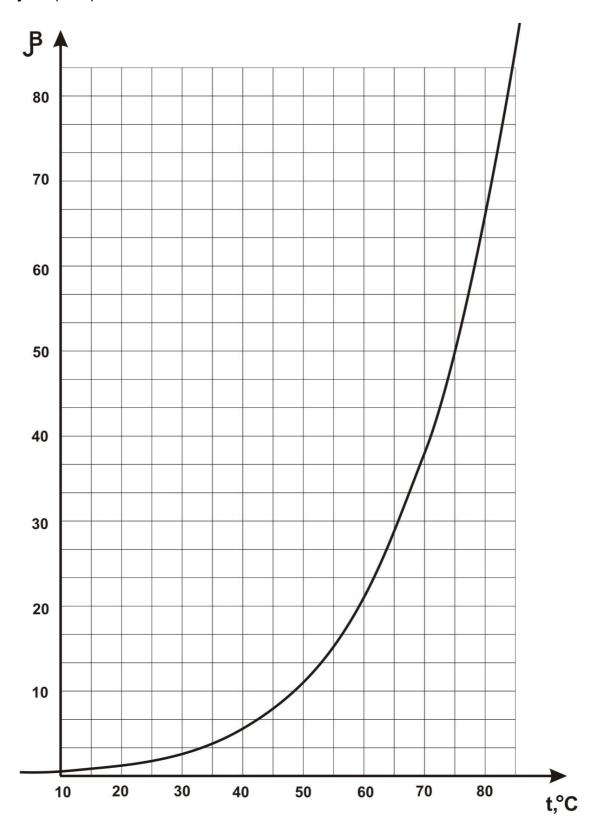


Рисунок 4. Зависимость коэффициента β от температуры.

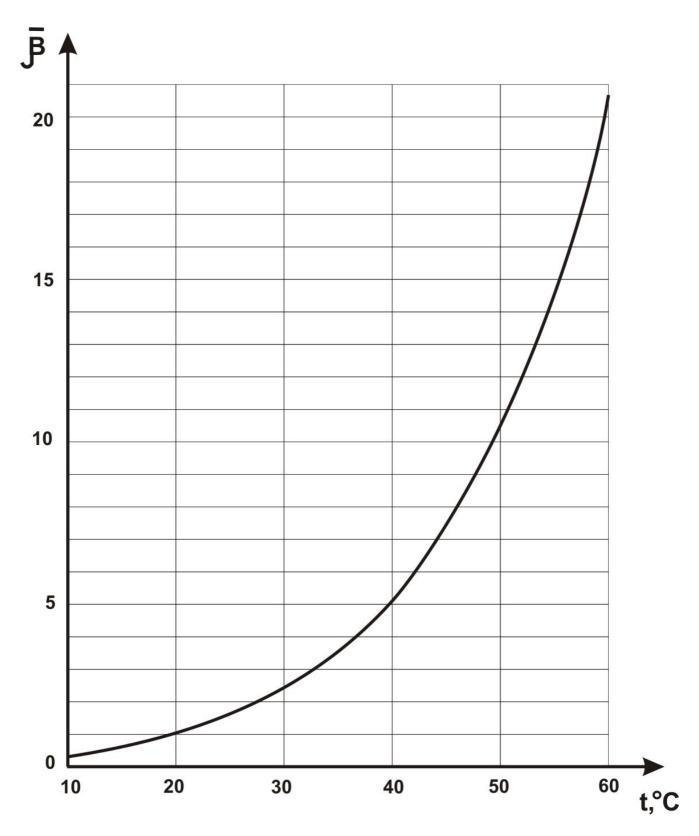


Рисунок 5. Зависимость коэффициента $\overline{\beta}$ от температуры (увеличенный масштаб).

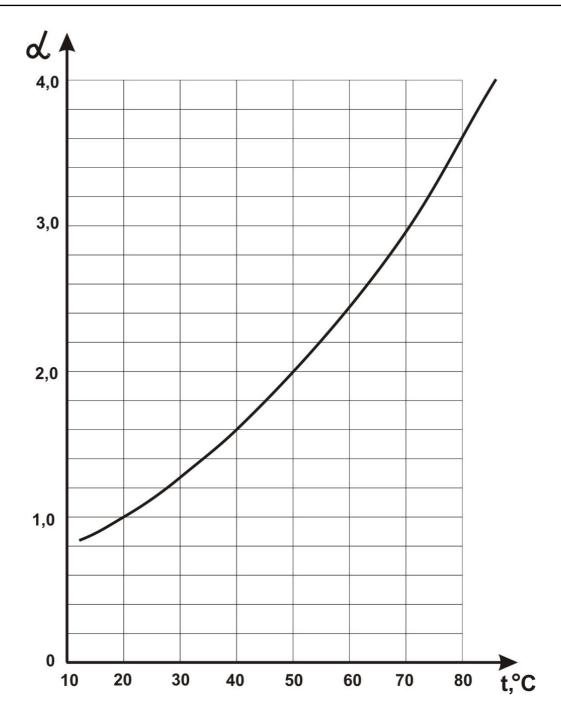


Рисунок 6. Зависимость коэффициента α от температуры

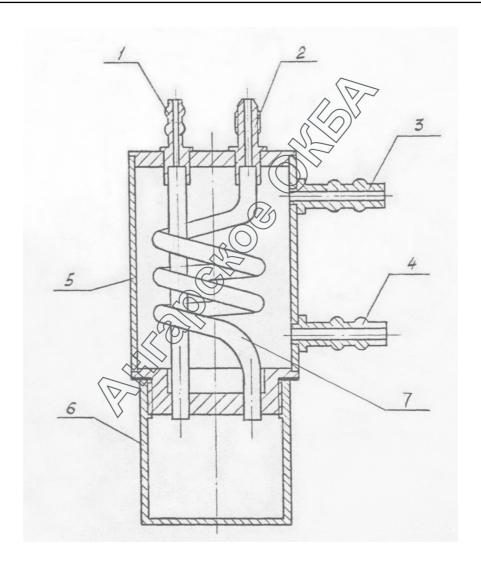
Понижающий коэффициент К незначительно увеличивается с повышением давления газа в увлажнителе. Для ориентировочных расчетов ОДВ ПГС его можно принять постоянным.

4.5.5. Давление газа в насытителе НС и увлажнителе У измеряется пружинными манометрами типа МО по ГОСТ 6521-72 с наибольшими значениями диапазона измерений 10 и 1 кгс/см 2 (1,0 и 0,1 МПа) с пределам допускаемой приведенной погрешности $\pm 0,4$ %.

Манометры подключаются к насытителю или увлажнителю с помощью переключателей потока ПП1 и ПП2.

- 4.5.6. Понижение давления газа при переходе от насытителя (увлажнителя) к рабочей камере в изотермическом режиме осуществляется игольчатым дросселем с улучшенным теплообменом. Во время дросселирования газ охлаждается. Чтобы уменьшить охлаждение иглы и сопла дросселя, сопло вынесено во входной штуцер дросселя, чем обеспечивается улучшенный теплоподвод от термостатирующей жидкости в которую он погружен.
- 4.5.7. Конструкция рабочей камеры генератора предусматривает установку в нее двух измерительных преобразователей относительной влажности гигрометров, типа РИФ. Сменная рабочая камера генератора предназначена для установки в нее двух датчиков гигрометров типа ВОЛНА-5.
- 4.5.8. Вентили В1 и В2 служат для подключения к выходной коммуникации соответственно насытителя НС или увлажнителя У при выбранном режиме работы (режим 1 или режим 2).

Вентиль В3 служит для отсекания рабочей камеры от пневмогидравлической системы генератора при подаче ПГС к внешним гигрометрам через штуцер К ВНЕШНЕМУ ГИГРОМЕТРУ.


4.5.9. Конденсатоотводчик (рис. 7) предназначен для отделения конденсата от ПГС, выходящей из рабочей камеры генератора при температуре термостатирования насытителя выше температуры окружающего воздуха. Отделение конденсата предотвращает заполнение водой выходных коммуникаций.

Конструктивно кондёнсатоотводчик выполнен в виде змеевика 7, находящегося в герметичной рубашке 5, служащей для подвода охлаждающей жидкости (воды) через штуцера 4 (вход) и 3 (выход).

ПГС, подводимая к штуцеру 2, проходит в стакан для слива конденсата через змеевик. На холодной стенке змеевика влага конденсируется и стекает в стакан, объем которого равен объему воды, заливаемой в насытитель. Через штуцер 1 ПГС выходит из конденсатоотводчика. Для слива конденсата стакан отворачивается.

Для предотвращения попадания конденсата в рабочую камеру из выходных коммуникаций между рабочей камерой и конденсатоотводчиком установлен каплеуловитель (по схеме 5К2.844.100 X3 – отстойник).

4.5.10. Насытитель НС (см. 5К2.844.100 X3), увлажнитель У, дроссель ДР, вентили В1,В2,В3 и камера К термостатируются в ванне термостата. Ванна термостата заполняется теплоносителем до определенного уровня. Учитывая, что температура термостатирования должна быть от 15 до 80°С, в качестве термостатирующей жидкости выбрана вода.

1 — штуцер выхода ПГС; 2 — штуцер ввода ПГС; 3 — штуцер выхода охлаждающей воды; 4 — штуцер ввода охлаждающей воды; 5 — рубашка; 6 — стакан для сбора конденсата; 7 — змеевик.

Рисунок 7. Конденсатоотводчик

Перемешивание термостатирующей жидкости в ванне термостата осуществляется с помощью смесителя. На валу смесителя установлены две крыльчатки, а вал в свою очередь, установлен в полый цилиндр, таким образом, что верхняя крыльчатка находится в цилиндре примерно на 1/3 высоты от верхнего его среза, а вторая на 10-20 мм ниже нижнего среза цилиндра, то есть вне его. При вращении вала верхняя крыльчатка направляет поток жидкости вниз, засасывая ее через окна, прорезанные в верхней части цилиндра, то есть производит перемешивание жидкости в вертикальной плоскости. Нижняя крыльчатка направляет поток жидкости в стороны – производит перемешивание в горизонтальной плоскости. перемешивание Эффективное позволяет получить однородное температурное поле в ванне термостата по всему объему.

С наружной стороны цилиндра смесителя расположен трубчатый змеевик холодильника - теплообменника. В этот змеевик подается сети водопроводной холодная вода для понижения температуры более термостатирования устойчивой стабилизации И ee регулируемом нагреве и изменении температуры окружающего воздуха.

- 4.5.11. Для измерения температуры насытителя и увлажнителя (теплоносителя) применены лабораторные термометры типа ТЛ-4 №2 и №3 с диапазоном измерений соответственно от 0 до 50°С и от 50 до 105°С ТУ 25-2021-003-88. Пределы допускаемой абсолютной погрешности термометров ±0,1°С.
- 4.5.12. Осушитель OC_2 (см. чертёж 5K2.844.100 X3) представляет собой сосуд из нержавеющей стали, заполненный поочередно слоями стекловаты и сухой пятиокиси фосфора. На входе и выходе осушителя слой стекловаты 15-25 мм.

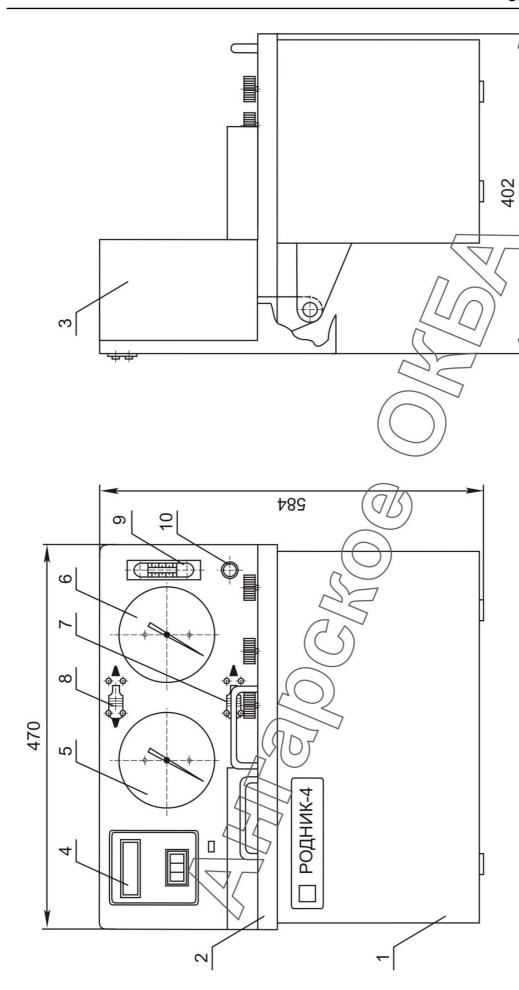
Вентиль В4 предназначен для отсекания осушителя от пневмогидравлической системы генератора, при подаче к потребителю влажного газа.

- 4.5.13. Терморегулятор предназначен для управления работой нагревателя, задания, необходимой температуры термостатирования и индикации текущего значения температуры термостата.
 - 4.6. Описание электрической принципиальной схемы генератора.
- 4.6.1. На принципиальной электрической схеме образцового генератора влажного газа 5К2.844.100 ЭЗ указано соединение отдельных функциональных узлов А1, А2, АЗ и элементов: трансформатора Т1, электродвигателя М1, тиристоров V1, V2, управляющих нагревательным элементом Е1, плавких вставок F1, F2, сетевой вилки X1, переключателя сети S1.
 - 4.6.2. Преобразователь АЗ (см. 5К5.182.043 ЭЗ) содержит:
 - 1) рабочий высокочастотный генератор V1, V2;
- 2) опорный высокочастотный генератор, смеситель, усилитель низкой частоты, выполненные на элементе D1;
 - 3) элементы подстройки частоты опорного генератора, С9, С4-С12.

Частота рабочего генератора определяется чувствительным элементом В1. Рабочий генератор представляет собой емкостную трехточку с регулируемой амплитудой колебаний. Регулировка осуществляется через усилитель V1, выпрямитель V4, V5, усилитель D1.

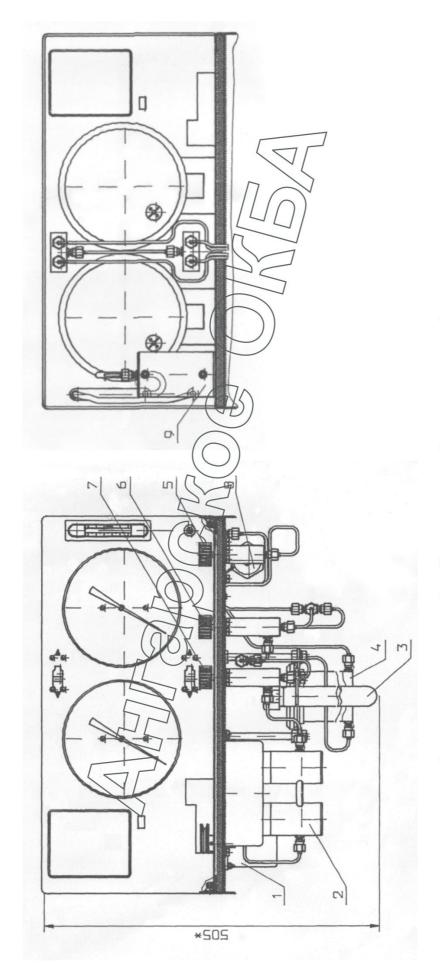
4.6.3. Преобразователь A2 (см. 5К5.121.044 ЭЗ) преобразует выходной сигнал преобразователя A3, подаваемый на контакт 6 разъема X1, в показания дисплея D17 и вырабатывает сигнал, управляющий питанием нагревателя.

Показания дисплея формируются четырехдекадным счетчиком D8–D11, дешифратором D12-D15. Период счета задается генератором опорной частоты D4, делителем D6 и делителем D5, управляемым переключателем S2, S3. При юстировке образцового генератора влажного


газа переключатели S2, S3 совместно с движками переменной емкости C9 и C12 преобразователя A3 устанавливают в положение, обеспечивающее показания дисплея в соответствии с температурой термостата образцового генератора влажного газа.

Переключатель S1 задает код необходимой температуры термостатирования, который подается на цифровой компаратор D1-D3. Вторым кодом является код счетчика, значение которого определяется температурой термостата. Компаратор сравнивает значения двух кодов и формирует управляющий сигнал, который подается на контакт 2 разъема X1.

- 4.6.4. Плата питания А1 (см. 5К6.672.466 ЭЗ) подключается к трансформатору, формирует стабилизированное напряжение питания (элементы V1, D1) и импульсы синхронные напряжению сети, которые управляют открытием тиристоров. Импульсы управления развязаны от силовой цепи тиристоров с помощью оптодиодных пар V8, V9. Управляющий сигнал преобразователя А2 поступает через контакт 19 разъема X1 на элемент D3, который разрешает или запрещает прохождение синхронных импульсов.
 - 4.7. Описание конструкции генератора.
- 4.7.1. Общий вид генератора показан на рис. 8. Генератор состоит из корпуса 1, панели 2, шарнирно закрепленной на корпусе, и кожуха 3. Под кожухом установлены: блок управления нагревателя 4, манометры 5 и 6. На лицевой стороне кожуха установлены: пневмопереключатель 7 для подключения манометров, 8 для подключения насытителя или увлажнителя, индикатор расхода газа 9, штуцер ВЫХОД ГАЗА 10.
- 4.7.2. Остальные узлы пневмогидравлической системы генератора смонтированы на панели, представленной на рис. 9.


На панель выведены ручки управления пневмогидравлической системы и штуцера: ВХОД ГАЗА, К ВНЕШНЕМУ ГИГРОМЕТРУ, ЗАЛИВ, СЛИВ ВОДЫ насытителя и гнезда для установки манометров. Все ручки и штуцера имеют условное обозначение согласно принципиальной пневмогидравлической схеме приведенной на лицевой поверхности панели.

Снизу панели установлены: электродвигатель 1, предназначенный для привода крыльчаток смесителя, рабочая камера 2, увлажнитель 3, насытитель 4, вентили 5 и 6, дроссель 7, осушитель 8, сзади на панели под кожухом установлен конденсатоотводчик (влагоотделитель 9).

1- корпус; 2-панель; 3-кожух; 4-блок управления нагревом; 5,6-манометры; 8-переключатель потоков; 9-индикатор газа; 7-пневмопереключатель; 10-штуцер ВЫХОД ГАЗА.

Рисунок 8. Общий вид генератора.

1-электродвигатель; 2-рабочая камера; 3-увлажнитель; 4-насытитель; 5,6-вентили; 7-дроссель; 8-осушитель; 9-конденсатоотводчик.

Рисунок 9. Панель.

5. УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

- 5.1. При вводе в эксплуатацию и обслуживании генератора необходимо соблюдать требования безопасности, установленные для работ с электроприборами и приборами, находящимися под повышенным давлением газа.
- 5.2. Запрещается включать генератор в работу без подключения к нему заземляющего провода.
- 5.3. Запрещается подключать генератор к электрической сети с напряжением более 242 В.
- 5.4. При ремонте и проверке генератора на герметичность сетевой кабель должен быть отключен от электрической сети.
- 5.5. Перед подключением генератора к электрической сети необходимо убедиться в наличии воды в ванне термостата.
- 5.6. Запрещается подавать на вход генератора газ под давлением более 1,0 МПа (10 кгс/cm^2).
- 5.7. В рабочую камеру и сменную рабочую камеру не должен подаваться газ под давлением более 50 кПа (0,5 кгс/см 2), а в насытитель более 1,0 МПа (10 кгс/см 2).
- 5.8. Запрещается использовать в качестве рабочего взрывоопасные газы и кислород.
- 5.9. Запрещается заливать воду в насытитель без предварительного слива оставшейся воды из насытителя и конденсата из конденсатоотводчика.
- 5.10. При работе с ртутными термометрами необходимо соблюдать следующие правила безопасной работы:
 - запрещается нагревать термометры выше температуры верхнего предела измерений;
 - в случае поломки термометра разлитую ртуть собрать при помощи специальной пипетки или склянки Тищенко;
 - произвести обработку загрязненной ртутью поверхности 1% раствором перманганата калия, подкисленного соляной кислотой.
- 5.11. По способу защиты человека от поражения электрическим током генератор относится к классу 01 по ГОСТ 12.2.007.0-75.
- 5.12. Запрещается заменять плавкие вставки другими, рассчитанными на большую силу тока, или закорачивать их.

6. ОБЩИЕ УКАЗАНИЯ

- 6.1. Допускается установка датчиков гигрометров (первичных преобразователей) в камеру, изготавливаемую потребителем.
 - 6.2. Требования к рабочей камере и особенности работы с ней.

6.2.1. Камера должна изготавливаться из нержавеющей стали, объем её должен быть, по возможности, минимальным, а внутренние поверхности обработаны (шероховатость поверхности не более Rz). Поток ПГС, проходящий через камеру, должен быть равномерным по всему объему, камера не должна иметь застойных (непродуваемых) зон.

Отступление от этих требований ведет к увеличению времени установления постоянных показаний поверяемых гигрометров.

- 6.2.2. Камера с подводящими коммуникациями должна быть герметичной при давлении 10 кПа (0,1 кгс/см²).
- 6.2.3. Для предотвращения конденсации влаги камера с первичными преобразователями поверяемых гигрометров должна хорошо термостатироваться. Разность температуры в любых двух точках рабочего объема камеры не должна быть более 0,1°C.
- 6.2.4. При поверке измерителей относительной влажности в рабочей камере необходимо выполнять требования п.6.2.3. Температурное поле в рабочей камере должно быть равномерным (так как относительная влажность ПГС зависит от температуры). Разность температур в любых двух точках объема камеры не должна превышать 0,1°С.
- 6.2.5. Допускается производить поверку гигрометров, первичные преобразователи которых выделяют небольшое количество тепла, но требование п.6.2.3. должно выполняться. При этом рядом с чувствительным элементом первичного преобразователя в рабочую камеру должен устанавливаться термометр с ценой деления не более 0,1°C.

Расчет абсолютной влажности (объемной доли влаги) ПГС (B) в этом случае производится по формуле 4.2., а относительной влажности (φ , %) по формуле:

$$\varphi = \frac{B_{H1}(Pa + \Delta P_1)Z_K}{B_{H2}(P_H + Pa)Z_H} \cdot 100,$$
 (3)

где B_{H1} , B_{H2} – табличные значения характеристики насыщенного водяного пара соответственно для температуры термостатирования насытителя и рабочей камеры около поверяемого первичного преобразователя;

Ра – атмосферное давление, Па (кгс/см²);

 ΔP_1 – избыточное давление во внешней рабочей камере, Па (кгс/см²); P_H – измеренное избыточное давление в насытителе, Па (кгс/см²).

6.3. Во избежание попадания масла в пневмогидравлическую систему генератора манометры после государственной поверки должны быть тщательно промыты ацетоном (спиртом этиловым) и просушены при температуре 50-70°С в течение не менее 3 ч.

- 6.4. При отсчете показаний термометра определяется амплитуда колебания температуры и в расчет ОДВ ПГС берется среднее значение температуры.
- 6.5. При подключении к пневмогидравлической системе генератора манометра с меньшим верхним пределом измерения необходимо предварительно убедиться в том, что давление рабочего газа в насытителе меньше верхнего предела измерения подключаемого манометра.
- 6.6. В генераторе не предусмотрена возможность измерения давления рабочего газа в режиме получения осушенной ПГС. Давление ЦГС

на выходе к внешнему гигрометру измеряется внешним манометром.

- В режиме получения осушенной ПГС расход ее через рабочую камеру регулируется внешним редуктором при полностью открытом вентиле В4 (см. чертёж 5К2.844.100 X3) и контролируется по ротаметру Р.
- 6.7. Не допускается устанавливать расход ПГС на выходе генератора более 1 л/мин. В случае превышения указанного расхода вода из насытителя может попасть в коммуникации и рабочую камеру и действительная влажность ПГС при этом будет отличаться от расчетной.
- 6.8. При увеличении давления рабочего газа в насытителе следите по ротаметру за изменением расхода ПГС на выходе генератора и корректируйте расход при помощи дросселя РАСХОД влажного газа (ДР).
- 6.9. Полное перекрывание дросселя РАСХОД влажного газа при наличии давления рабочего газа на входе в генератор не допускается за исключением случаев включения и выключения генератора в работу. При этом необходимо внимательно следить за изменением давления (по подключенному манометру) и установкой требуемого расхода ПГС (по ротаметру).
- 6.10. Отсчет показаний термометров должен производиться с учетом поправок, указанных в свидетельствах о их государственной поверке.
- 6.11. После работы генератора при температуре термостатирования выше температуры окружающего воздуха необходимо продуть рабочую камеру сухим газом в течение 15 мин.
- 6.12. Периодичность заполнения насытителя водой определяется оператором с учетом температуры термостатирования насытителя расхода газа через него и суммарного времени непрерывной работы генератора с использованием табличных данных по влажности насыщения

(см. таблицу 2 и 3, приложение 1).

- 6.13. При заполнении насытителя водой необходимо предварительно слить остаток воды из насытителя и конденсат из конденсатоотводчика.
- 6.14. Для обеспечения метрологических характеристик указанных в настоящем паспорте необходимо контролировать и поддерживать требуемый уровень воды в термостате генератора.

- 6.15. С целью предотвращения растрескивания гранул и капилляров цеолита в увлажнителе рекомендуется очень медленно производить уменьшение давления газа в увлажнителе. После окончания работы генератор давление газа в увлажнителе допускается не сбрасывать.
- 6.16. Проверку герметичности увлажнителя рекомендуется проводить отдельно от остальной схемы генератора окунанием в воду, а не по спаду давления.
- 6.17. В случаях поверки кулонометрических гигрометров типа БАЙКАЛ допускается не аттестовывать ПГС по ОДВ дополнительным кулонометрическим гигрометром, так как кулонометрические гигрометры являются абсолютными.
- 6.18. Для сокращения времени выхода генератора на установившийся режим при работе на повышенной температуре (50-80°C) термостат-генератора допускается заполнять горячей водой с температурой соответствующей рабочей.
- 6.19. При работе генератора в режиме 1 получают ПГС с относительной влажностью в диапазоне от 10 до 98% и ОДВ в диапазоне от 1700 до 460000 млн $^{-1}$. При работе в режиме 2 получают ПГС с ОДВ от 10 до 1700 млн $^{-1}$.
- 6.20. С целью расширения диапазона воспроизводимой ОДВ в сторону малых значений и повышения оперативности допускается смешивать поток увлажненного газа с потоками осушенного газа. С этой целью газ от источника сжатого газа подается одновременно на штуцеры ВХОД ГАЗА 2 и ВХОД ГАЗА 3, а регулировку влажности смешанного потока ведут с помощью дросселя ДР и вентиля-отсекателя сухого газа В4 (см. чертёж 5К2.844.100 X3). Генератор при этом включают в работу в режиме 2.
- 6.21. Для нормальной эксплуатации генератора необходимо дополнительно иметь барометр-анероид (например, типа М98 ТУ25-11-1316-76, М67 ТУ25-04-1797-75 и др.), U образный (допускаемая погрешность 1 мм вод. ст.) или пружинный манометр (например типа МО-160-100 кПа кл. 0,4, ГОСТ 6521-72).

7. ПОДГОТОВКА ГЕНЕРАТОРА К РАБОТЕ И ПОРЯДОК РАБОТЫ

- 7.1. Произведите тщательный осмотр генератора перед включением его в работу, убедитесь в отсутствии повреждений после транспортировки и распаковки.
- 7.2, Произведите подготовку генератора к работе при первичном включении в следующей последовательности:
 - 1) проверьте генератор на герметичность как указано в п.8.6.;
- 2) присоедините к клемме ЗЕМЛЯ заземляющий провод и залейте через отверстие для установки термометра чистую воду в ванну термостат до уровня на 10-15 мм ниже нижней поверхности панели. Контроль уровня

воды визуальный или с помощью стеклянной трубки. Для сокращения времени прогрева генератора при температуре термостатирования выше температуры окружающего воздуха термостат генератора допускается заполнять горячей водой;

3) переведите ручку переключателя потоков ГОЛ в положение соответствующее подключению к пневмогидравлической системе генератора требуемого манометра МН1 или МН2. Давление рабочего газа в насытителе в зависимости от задаваемой влажности и верхний предел соответствующего манометра определите по таблицам, приведенным в Приложении 2. Кроме того, давление рабочего газа в насытителе или увлажнителе для получения требуемой влажности можно определить из формул 4.1.,4.2. и 4.3.

Переведите ручку переключателя потоков ПП2 в положение НС (режим 1 работы генератора), что соответствует подключению манометров к насытителю, или в положение У, что соответствует подключению манометров к увлажнителю.

Подсоедините U – образный или пружинный (в зависимости от предполагаемого давления ПГС в рабочей камере) манометр к штуцеру ДАВЛЕНИЕ В РАБОЧЕЙ КАМЕРЕ (в случае получения ПГС с относительной влажностью);

- 4) залейте дистиллированную воду в насытитель, для этого:
- откройте вентиль В1 и дроссель РАСХОД влажного газа (ДР) и снимите заглушку со штуцера К ВНЕШНЕМУ ГИГРОМЕТРУ (см. чертёж 5K2.844.100 X3);
- отмерьте в чистый стакан 100 мл дистиллированной воды;
- подсоедините воронку к штуцеру ЗАЛИВ И СЛИВ ВОДЫ с помощью чистого гибкого шланга;
- вылейте воду из стакана в воронку и выждите пока она станет в насытитель;
- закройте дроссель РАСХОД влажного газа (ДР) и наверните заглушку на штуцер К ВНЕШНЕМУ ГИГРОМЕТРУ.

В тех случаях, когда вода добавляется в насытитель после работы генератора, предварительно удалите из насытителя остатки воды или убедитесь в ее отсутствии. Для этого:

- закройте вентиль В1;
- подсоедините к штуцеру ЗАЛИВ И СЛИВ ВОДЫ гибкий шланг, второй конец которого опустите в стакан;
- подайте плавно рабочий газ в насытитель через штуцер ВХОД ГАЗА 1, наблюдайте за вытеснением воды в стакан (подачу и отключение рабочего газа произведите несколько раз до тех пор, пока поступление воды в стакан прекратится);
- произведите слив конденсата из конденсатоотводчика по методике изложенной в п. 7.10.

- 5) вставьте лабораторный термометр ТЛ-4 №2 или №3 в отверстие для термометра;
 - 6) подсоедините сетевой кабель к сетевому разъему генератора;
- 7) соедините вход змеевика для охлаждающей жидкости гибким резиновым шлангом с источником охлаждающей жидкости (холодной системой. Если воды), выход С дренажной температура термостатирования выше температуры окружающего воздуха парогазовая смесь подается в рабочую камеру источник охлаждающей жидкости (холодной воды) и дренажную систему соедините со штуцерами конденсатоотводчика, причем вход жидкости к нижнему штуцеру, а дренажную систему – к верхнему;
- 8) соедините штуцер ВХОД ГАЗА 1 (при работе генератора в режиме 1 или штуцер ВХОД ГАЗА 2 (при работе генератора в режиме 2) с источником сжатого газа. Если предполагаемое давление газа в насытителе (увлажнителе) менее 0,15 МПа (1,5 кгс/см²), то на вход генератора установите редуктор РДВ-5М, позволяющий регулировать давление газа на выходе из него в пределах от 0 до 0,15 МПа (от 0 до 1,5 кгс/см²) или баллонный редуктор типа БКД-25, если предполагаемое давление газа в насытителе более 0,15 МПа.

Примечания:

- 1. Трубки подводящих коммуникаций должны выдерживать давление сжатого газа 10 МПа (100 кгс/см²), а соединения их должны быть герметичными. Трубки должны быть промыты четыреххлористым углеродом и продуты сухим азотом (воздухом).
- 2.Гигрометр и преобразователи влажности подготовьте к работе в соответствии с их технической документацией.
- 9) присоедините поверяемый проточный гигрометр к штуцеру К ВНЕШНЕМУ ГИГРОМЕТРУ или вставьте погружные преобразователи влажности в гнезда рабочей камеры, свободное гнездо (если оно имеется) герметично заглушите;
- 10) закройте вентили В1, В2 и В4, а также дроссель РАСХОД влажного газа. Если парогазовая смесь подается к внешнему гигрометру, закройте вентиль ОТСЕКАТЕЛЬ КАМНЕЙ (Е3);
 - 11) снимите заглушку со штуцера ВЫХОД ГАЗА;
 - 12) заглушите штуцера ЗАЛИВ и СЛИВ ВОДЫ.
- 7.3. Включение генератора в работу для получения ПГС с заданной влажностью произведите в следующей последовательности:
- 1) подайте охлаждающую жидкость в змеевик термостата (если требуемая температура термостатировэния ниже температуры окружающего воздуха или равна ей);
 - 2) подключите вилку сетевого кабеля к сети 220 В;

- 3) включите генератор нажатием на кнопку СЕТЬ на панели блока управления;
- 4) с помощью задатчика температуры задайте требуемую температуру термостатирования и следите за изменением температуры по индикаторному табло блока управления нагревом, знаки «+» и «-» на индикаторном табло означают, соответственно, включение и выключение нагрева;
- 5) откройте вентиль на выходе источника сжатого газа и редуктором установите требуемое давление рабочего газа в насытителе (увлажнителе);
- 6) установите требуемый расход ПГС через рабочую камеру, открыв вентиль В1 или В2 (соответственно для режима 1 или 2) и плавно открывая дроссель РАСХОД влажного газа. Расход ПГС через рабочую камеру контролируйте по ротаметру. При поверке внешнего гигрометра давление парогазовой смеси на входе в гигрометр и расход ПГС измеряйте с помощью внешних приборов.

Перед подачей ПГС к внешнему гигрометру убедитесь расчетом (см. п.4.3.) в том, что в газовых коммуникациях, соединяющих генератор с гигрометром, не будет образовываться конденсат воды, то есть точка росы получаемой ПГС не выше температуры соединительных коммуникаций. При необходимости коммуникации, подводящие ПГС к гигрометру, следует обогревать;

- 7) определите температуру термостатирования после выхода генератора на режим (установившаяся температура термостата, давление рабочего газа) по термометру ТЛ-4 N2 и №3, вставленному в гнездо ТЕРМОМЕТР;
- 8) произведите отсчет показаний манометров (избыточное давление рабочего газа в насытителе и в рабочей камере), термометра (температура термостатирования насытителя) и барометра (атмосферное давление).

Рассчитайте влажность получаемой ПГС в соответствии с п.4.2 и п.4.3. после установления постоянных (неизменных) показаний поверяемых гигрометров.

Определение ОДВ ПГС при работе генератора в режиме 2 с помощь гигрометра в соответствии с п.4.4. и формулой (4.5.).

- 7.4. Произведите изменение относительной влажности получаемой ПГС путем изменения давления рабочего газа в насытителе при постоянной температуре термостатирования.
- 7.5. Увеличение относительной влажности парогазовой смеси производите в следующей последовательности:
- 1) установите расход парогазовой смеси через рабочую камеру 0,6-0,9 л/мин при помощи дросселя РАСХОД влажного газа для более быстрого понижения давления рабочего газа в насытителе;

- 2) с помощью редуктора понижайте давление газа на входе в генератор и наблюдайте по подключенному манометру за изменением давления рабочего газа в насытителе;
- 3) после понижения давления рабочего газа в насытителе до требуемого установите оптимальный расход газа через рабочую камеру.
- 7.6. Производите уменьшение относительной влажности ПГС в следующей последовательности:
- 1) давление рабочего газа в наснтителе для задания требуемой влажности и верхний предел соответствующего манометра определите по таблицам, приведенным в Приложении 2;
- 2) подключите к пневмогидравлической системе генератора манометр с большим верхним пределом измерения переводом ручки переключателя потоков ПП1 во второе фиксированное положение (МН2);
- 3) установите расход парогазовой смеси через рабочую камеру в пределах от 0,2 до 0,5 л/мин;
- 4) с помощью редуктора повышайте давление газа на входе генератора, наблюдайте по подключенному манометру за изменением давления рабочего газа в насытителе, пока оно не повысится до требуемого;
 - 5) установите оптимальный расход ПГС через рабочую камеру.
- 7.7. Производите изменение значения ОДВ получаемой ПГС как путем изменения давления рабочего газа в насытителе, так и одновременным изменением этого давления и температуры термостатирования.
- 7.8. Получение осушенной ПГС осуществляется в следующей последовательности:
- 1) соедините штуцер генератора ВХОД ГАЗА 3 с источником сжатого газа и произведите операции по п.п.7.3.(1)...7.3.(4), если первичный преобразователь необходимо термостатировать при температуре, отличающейся от температуры окружающего воздуха, в противном случае операции п.п.7.3.(1)...7.3.(4) выполнять не следует. Откройте вентиль В4 генератора и вентиль на выходе источника сжатого газа. Редуктором установите такое давление газа в пневмогидравлической системе генератора, при котором обеспечивается требуемый расход ПГС через рабочую камеру. При поверке внешнего гигрометра давление ПГС на входе в гигрометр и ее расход измеряйте с помощью внешних приборов.
- 7.9. Отключение генератора производите в следующей последовательности:
 - 1) закройте вентиль на выходе источника сжатого газа;
- 2) закройте вентиль В1 или В2 при соответствующем режиме работы генератора, прикройте дроссель влажного газа ДР;
- 3) снимите давление газа, подаваемого к штуцеру ВХОД ГАЗА при помощи редуктора;
- 4) плавно отворачивая гайку со штуцера ВХОД ГАЗА понизьте давление газа в насытителе (увлажнителе);

- 5) переведите кнопку СЕТЬ в положение ОТКЛ и отключите кабель от сети:
 - 6) перекройте вентиль подачи охдаждающей жидкости в термостат.
- 7.10. Производите слив конденсата из конденсатоотводчика одновременно с заполнением насытителя водой. Для этого отверните стакан от конденсатоотводчика слейте конденсат и снова наверните стакан на конденсатоотводчик с усилием достаточным для герметизации стакана.
- 7.11. После работы генератора в режиме 1 при температуре термостатирования насытителя 30-80°С произведите продувку пневматической схемы генератора сухим газом. Продувка производится с целью предотвращения выпадения конденсата в коммуникациях.

Продувку производите следующим образом:

- 1) выполните операции по п.7.9. (1, 2, 3, 4);
- 2) отсоедините подводящую коммуникацию от штуцера ВХОД ГАЗА 1 и подсоедините ее к штуцеру ВХОД ГАЗА 3;
- 3) откройте вентили В1 и В2 и подайте сухой газ в систему под небольшим давлением;
- 4) дросселем расход влажного газа (ДР) отрегулируйте расход на штуцере ВХОД ГАЗА 1 0,1-0,2 л/мин. Продуйте в течение 5-7 мин;
 - 5) произведите операции по п.7.9. (5 и 6);
- 7.12. Смену рабочей камеры генератора произведите в следующей последовательности:
- 1) переведите кнопку СЕТЬ в положение ОТКЛ и отключите сетевой кабель от сети;
 - 2) поднимите и закрепите панель;
- 3) отсоедините трубки от камеры и выверните винты крепления ее к панели;
- 4) установите вместо снятой камеры камеру из комплекта сменных частей, закрепите винтами и подсоедините к ней трубки.
- 7.13. Примеры расчета ОДВ ПГС на выходе увлажнителя и определения температуры термостатирования увлажнителя и давления газа в нем при получении требуемого значения ОДБ ПГС.

Пример 1. Требуется получить на выходе генератора ПГС с ОДВ 58 млн $^{-1}$. Избыточное давление ПГС на входе в поверяемый проточный гигрометр должно быть не менее 0,1 МПа (1 кгс/см 2).

Из формулы (4.6.) находим давление газа в увлажнителе, при котором получим требуемое значение ОДВ ПГС:

$$P_{y} = \frac{B_{P1} \cdot P_{1}}{B_{Py}} = \frac{15,4 \cdot 1,0}{58} = 0,265 \text{ (M}\Pi\text{a})$$
 (7.1.)

Допустим, что B_{P1} = 15,4 млн⁻¹, P_1 = 1,0 МПа (по данным паспорта раздел 13 или предварительно измеренная ОДВ ПГС кулонометрическим

гигрометром). Вместо величин в формулу (7.1.) подставим их значения и получим, что абсолютное давление газа в увлажнителе должно быть равным 0,265 МПа (избыточное ~ 0,165 МПа), что соответствует условиям задачи. Таким образом температура увлажнителя должна быть равной 20°С, абсолютное давление газа в нем 0,265 МПа.

Пример 2. Требуется получить на выходе генератора ПГС с ОДВ 120 млн⁻¹. Избыточное давление ПГС на входе в поверяемый гигрометр должно быть не менее 50 кПа (0,5 кгс/см²). Подставляя значения величин в формулу (7.1.) получим значение абсолютного давления газа в насытителе, при котором ОДВ ПГС будет равна 120 млн⁻¹, оно равно 0,128 МПа, а избыточное 28 кПа. Это давление не соответствует условиям задачи (должно быть более 50 кПа).

Чтобы увеличить избыточное давление ПГС на выходе генератора, необходимо повысить температуру увлажнителя. Для этого примем, что надо выбрать такую температуру увлажнителя, при которой начальная влажность ПГС превышала бы ее аттестованное значение в 2 раза, то есть, чтобы условный коэффициент β (см. формулу 4.7.) был равен 2.

По графику на рис. 5 определяем, что значению коэффициента β = 2 соответствует температура 28°C. Рассчитываем давление газа в увлажнителе по формуле (7.1.). Вместо Вр₁ подставляем новое значение влажности из формулы (4.7.):

$$B_t = B_{20} \cdot \beta ,$$

где $B_{20} = Bp_1$, так как температуры совпадают, млн⁻¹.

$$P_{y} = \frac{15,4 \cdot 2 \cdot 1,0}{120} = 0,257$$
 (M Π a)

Таким образом абсолютное давление газа в увлажнителе надо задать 0,257 МПа, а температуру термостатирования 28°C.

Пример 3. Требуется получить на выходе генератора ПГС с ОДВ 1300 млн⁻¹. Избыточное давление газа на входе в поверяемый гигрометр 0,6 МПа.

Данные последней аттестации увлажнителя: $Bp_1 = 12,0$ млн⁻¹, $P_1 = 1,0$ МПа, $t_y = 20$ °C.

Поскольку условия задачи приближены к граничным возможностям увлажнителя, предварительный расчет условий будем вести на максимальную температуру. По графику на рис. 4 определяем, что максимальное увеличение начальной (Bp_1) влажности при температуре 80° С возможно только в 68 раз, то есть коэффициент $\beta = 68$.

Чтобы определить абсолютное давление газа в увлажнителе, при котором получим заданную ОДВ ПГС, подставим в формулу (7.1.) с учетом (7.2.) числовые значения величин:

$$P_{y} = \frac{12 \cdot 68 \cdot 1,0}{1300} = 0,628$$
 (M Π a)

Избыточное давление ПГС на выходе при этом будет равным 0,528 МПа. Условия задачи не выполняются.

Температуру термостатирования повысить не можем, так как расчет произведен на максимальную температуру 80° С. Принимаем решение перезаполнить увлажнитель таким образом, чтобы начальная ОДВ ПГС была равной 25-35 млн⁻¹. Тогда для $Bp_1 = 30$ млн⁻¹ можем определить коэффициент β , а, следовательно, и температуру термостатирования увлажнителя по формуле:

$$\beta = \frac{P_{3V} \cdot B_3}{Bp_1 \cdot P_1}, \tag{7.3.}$$

где P_{3y} и B_3 – соответственно, заданное минимальное абсолютное давление газа в увлажнителе и заданная ОДВ ПГС на выходе увлажнителя, МПа (кгс/см²) и млн-1.

Определим β с учетом запаса на давление (P_{3y} = 0,6+0,1+0,05 = 0,75 МПа)

$$\beta = \frac{0.75 \cdot 1300}{30 \cdot 10} = 32.5 \approx 33$$

По графику рис. 4 определяем соответствующую рассчитанному β температуру. Она равна 68°С.

Таким образом, чтобы реализовать условия задачи увлажнитель необходимо термостатировать при температуре 68°C и задать давление газе в нем 0,75 МПа (7,5 кгс/см²).

Пример 4. Датчик погружного типа необходимо поверить при температуре 50°C и абсолютном давлении 0,8 МПа. Генератор работает в режиме 2. Требуется определить, какая ОДВ ПГС будет на выходе увлажнителя Данные аттестации увлажнителя: $Bp_1 = 12,0$ млн⁻¹, $P_1 = 1,0$ МПа, $t_v = 20$ °C, K = 0,00519.

Влажность ПГС для указанных условий можно рассчитать по формуле (4.3.). Для этого по таблице Приложения 1 найдем влажность насыщения для температуры 50°C.

По графику на рис. 6 определим коэффициент для температуры 50°C, который показывает во сколько раз увеличился коэффициент К при

повышении температуры увлажнителя от 20 до 50°С, то есть $K_{50} = K_{20} \cdot \alpha$. Коэффициент $\alpha = 2,0$. Подставляем числовые значения величин в формулу (4.3.) и найдем искомое значение.

$$B = \frac{0.1033 \cdot 122161 \cdot 0.00519 \cdot 2}{0.8} = 164$$
 (млн⁻¹)

7.14. Для определения точки росы $(\tau, ^{\circ}C)$ ПГС, находящийся при нормальном давлении 101,3 кПа (760 мм рт. ст.), по рассчитанному значению ОДВ (В, млн⁻¹) необходимо в таблице 1 или 2 (Приложение 1) найти наиболее близкое к рассчитанному значение влажности. Найденное значение ОДВ находится на пересечении строки, соответствующей целым градусам и графы, соответствующей десятым долям градуса температуры точки росы.

Пример 1. При ОДВ ПГС 600 млн⁻¹ в таблице 2 находим наиболее близкое значение 599,4 млн⁻¹,которое находится на пересечении строки «-25» и графы «0,4». В соответствии с этим при влажности 600 млн⁻¹ и нормальном давлении ПГС τ = -25,4°C.

Для определения точки росы ПГС, находящейся при повышенном давлении (до 1,0 МПа),необходимо рассчитанное значение ОДВ предварительно умножить на значение отношения абсолютного давления ПГС и нормального давления и далее как описано выше.

Пример 2. Требуется определить точку росы ПГС с ОДВ 1080 млн⁻¹ при абсолютном давлении 0,85 МПа (сумма избыточного и атмосферного давлений).

Значение ОДВ умножаем на 8,5, получаем 9180 (млн⁻¹). В таблице 1 находим наиболее близкое значение 9168 млн⁻¹,которое находится на пересечении строки «+5» и графы «0,9». В соответствии с этим при ОДВ 1080 млн⁻¹ и абсолютном давлении ПГС 0,85 МПа τ = 5,9°C.

При определении точки росы парогазовой смеси с применении таблиц (Приложение 1) по известному значению абсолютной влажности, выраженной в г/м³, следует помнить, что в таблицах значения влажности насыщения в г/м³ приведены для температуры, указанной на пересечении строки, в которой находится значение влажности с первой графой.

Примечание. После работы генератора при повышенной температуре термостатирования (от 40 до 80°С) необходимо проверить герметичность пневмогидравлической системы по п.п.8.6.2.; 8.6.3.; 8.6.5. и, при необходимости, подтянуть сальниковые уплотнения дросселя ДР и вентилей В1, В2, В3, В4.

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

8.1. Через каждые 10 сут работы генератора необходимо заполнить насытитель водой, как указано в п. 7.2.(4) и слить конденсат из конденсатоотводчика, как указано в п. 7.10.

Периодичность заполнения насытителя водой может изменяться в зависимости от режима работы генератора (см. таблицу 2 и 3). Чем выше температура, влажность, расход газа и суточная продолжительность работы, тем чаще производится заполнение.

- 8.2. Перезаполнение увлажнителя.
- 8.2.1. Перезаполнение увлажнителя производите каждый раз в тех случаях, когда не удается получить ПГС с требуемой ОДВ при желаемых условиях (Р и Т) работы генератора, а также в тех случаях, когда не удовлетворяет стабильность получаемой ОДВ ПГС.
- Перезаполнение увлажнителя производите следующим образом. Поднимите и зафиксируйте панель генератора. Протрите сухой тканью штуцера увлажнителя. Отсоедините трубки газовой системы от штуцеров увлажнителя. Отверните винты крепления снимите vвлажнитель. Отверните гайки с торцов увлажнителя фильтрующий материал из обоих его колен.

Вымойте, высушите и взвесьте на аналитических весах типа ВЛА-200 (ВЛР-200 и др.) фарфоровую выпаривательную чашку №3 или №4 (ГОСТ 9147-80 далее чашка). Высыпьте цеолит из увлажнителя в чашку и поместите ее в сушильный шкаф (например типа СНОЛЗ,5.3,5.3,5/3М). Нагрейте цеолит до температуры 360-380°С и выдержите при этой температуре 1,5-2 ч. Выньте чашку с цеолитом из шкафа и остудите ее до комнатной температуры в эксикаторе, заполненном сухой пятиокисью фосфора.

Снова взвесьте чашку с цеолитом и по разности масс второго и первого взвешиваний определите массу цеолита. Засыпьте цеолит в увлажнитель через воронку, не допуская рассыпания его.

Определите по графику (рис. 3) количество воды, необходимое для увлажнения цеолита, с учетом требуемой начальной влажности ПГС на выходе увлажнителя. Залейте в увлажнитель рассчитанное количество дистиллированной воды с помощью бюретки типа 3-2-10-0,05 или 7-2-10 по ГОСТ 20292-74, причем половину дозы залейте в одно колено, а вторую половину — в другое. Загерметизируйте накидными гайками торцы увлажнителя, заглушками — все его штуцера (фильтрующий материал не укладывайте в увлажнитель).

Поместите увлажнитель в сушильный шкаф и нагрейте до температуры 190-200°С. После выдержки увлажнителя при этой температуре в течение 1,5 ч отключите шкаф от электрической сети. Выждите до тех пор, пока шкаф самопроизвольно остынет вместе с увлажнителем до комнатной температуры.

Снимите накидные гайки с увлажнителя, положите на цеолит фильтрующий материал и снова наверните накидные гайки на торцы увлажнителя. Проверьте увлажнитель на герметичность при давлении газа 1,0 МПа (10 кгс/см²) окунанием в воду. При наличии негерметичности устраните ее.

Установите увлажнитель на панель и присоедините к нему трубки коммуникаций. Опустите панель.

С помощью кулонометрического гигрометра измерьте ОДВ ПГС на выходе генератора в режиме 2 работы при температуре термостатирования 20°С и абсолютном давлении газа в увлажнителе 1 МПа (10 кгс/см²). Рассчитайте ОДВ ПГС и понижающий коэффициент К по формулам (4.5.) и (4.4.). Запишите полученные данные в таблицу раздела ДАННЫЕ АТТЕСТАЦИИ УВЛАЖНИТЕЛЯ настоящего паспорта.

8.2.3. В п. 8.2.2. приведена общая наиболее простая методика перезаполнения увлажнителя.

Более надежное воспроизведение заданного значения начальной ОДВ ПГС на выходе увлажнителя удается получить при послойном дозировании воды в цеолит. Этот способ реализуется следующим образом.

После определения массы сухого цеолита и определения по графику рис. З необходимой дозы воды, заполните бюретку дистиллированной водой. Засыпьте в увлажнитель порцию цеолита (слой), добавьте несколько капель воды в оба колена, снова засыпьте слой цеолита и снова добавь те несколько капель воды и т.д. до полного заполнения. Загерметизируйте увлажнитель, поместите его в сушильный шкаф и нагрейте до температуры 190-200°С. Далее – как указано в п.8.2.2.

8.2.4. В тех случаях, когда аттестованное значение ОДВ ПГС после перезаполнения оказалось меньше требуемого, допускается добавлять дополнительно к уже продозированной небольшую порцию воды в увлажнитель. Для этого:

Отсоедините увлажнитель от панели, снимите накидные гайки с увлажнителя, выньте фильтры, добавьте дополнительную порцию дистиллированной воды (по полпорции в каждое колено), загерметизируйте увлажнитель и далее как указано в п.8.2.2.

- 8.3. При работе с генератором следите за уровнем воды в ванне термостата и добавляйте ее, когда уровень опустится на 20-25 мм ниже нижней плоскости панели термостата. Сливайте воду из ванны термостата при длительных перерывах в работе, это увеличит срок службы электронагревателя и предотвратит коррозию составных частей генератора.
- 8.4. Через каждые 2 месяца работы генератора регенерируйте осушитель ОС1.

Для этого:

- 1) отсоедините осушитель от пневмогидравлической системы генератора;
- 2) поместите его в сушильный шкаф (например, типа СНОЛ 3,5 СНОЛ3,5.3,5.3,5/3М), к выходу осушителя подсоедините газовую трубку из стали X18H10T и соедините ее с источником сжатого газа;

- 3) установите такое давление газа в подводящей трубке, при котором обеспечивается расход раза через осушитель 100-150 см³/мин;
- 4) задайте температуру сушильного шкафа 350-390°C и после ее достижения выдержите осушитель в течение 2,5-3 ч;
- 5) после охлаждения осушителя подсоедините его к пневмогидравлической системе генератора.

Примечание: ОДВ газа используемого для продувки осушительной колонки не должна быть более 10 млн⁻¹.

8.5. Через каждые 300 ч работы генератора, но не реже одного раза в 5 месяцев перезаполните осущитель ОС2.

Для этого:

- 1) отсоедините осушитель от пневмогидравлической системы генератора;
 - 2) разберите осушитель;
- 3) промойте патрон, гайки, сетки водой и высушите их в сушильном шкафу при температуре 90-100°С в течение 1 ч;
- 4) заполните патрон попеременно слоями сухого стекловолокна и сухой пятиокиси фосфора (слой стекловолокна ГОСТ 10727-73 примерно 20 мм, слой пятиокиси фосфора 10 мм);
 - 5) соберите осушитель;
- 6) проверьте осушитель на герметичность при давлении 1,0 МПа (10 кгс/см²);
- 7) подсоедините осушитель к пневмогидравлической системе генератора и закрепите его на панели.
- 8.6. Проверка герметичности пневмогидравлической системы генератора.
- 8.6.1. Проверка герметичности пневмогидравлической системы генератора проводится через каждые 6 нес и включает проверку герметичности:
- 1) пневмогидравлической системы генератора в режиме 1 работы, исключая рабочую камеру;
- 2) пневмогидравлической системы генератора в режиме 2 работы, исключая рабочую камеру;
 - 3) рабочей камеры;
 - 4) осушителя.
- герметичности пневмогидравлической 8.6.2. Проверку генератора (исключая рабочую камеру) в режиме работы 1 производите следующим образом: гнезда рабочей камеры и штуцера К ВНЕШНЕМУ ГИГРОМЕТРУ, ЗАЛИВ И СЛИВ ВОДЫ заглушите заглушками. Манометр с пределом $K\Gamma C/CM^2$) 1,0 (10 измерений МΠа подключите пневмогидравлической системе генератора с помощью переключателя переведите в положение, соответствующее ПП1 (ручку потоков указанного манометра MH2). подключению В положение переключателя потока ПН2 переведите в положение НС. Вентиль В2 и

вентиль ОТСЕКАТЕЛЬ КАМЕРЫ (В3) закройте, а дроссель РАСХОД влажного газа (ДР) и вентиль В1 откройте, вентиль В4 сухого газа закройте, штуцер ВХОД ГАЗ 1 через запорный вентиль соедините с источником сжатого газа. На вход генератора подайте газ под давлением (0.95 ± 0.05) МПа $[(9.5\pm0.5)$ кгс/см²] и закройте запорный вентиль на подводящей линии.

Произведите отсчет показаний манометра МН2 через 15 и 45 мин. Определите спад давления по манометру за 30 мин. Спад давления не должен быть более 0,02 МПа (0,2 кгс/см²). Для понижения давления в пневмогидравлической системе генератора после проверки его на герметичность закройте дроссель РАСХОД влажного газа (ДР), плавно откройте вентиль ОТСЕКАТЕЛЬ КАМЕРЫ (ВЗ) и дросселем РАСХОД влажного газа установите расход в пределах 0,5-1 л/мин.

8.6.3. Проверку герметичности пневмогидравлической системы генератора (исключая рабочую камеру) в режиме работы 2 произведите следующим образом: гнезда рабочей камеры и штуцера К ВНЕШНЕМУ ГИГРОМЕТРУ, ЗАЛИВ И СЛИВ ВОДЫ заглушите заглушками. Ручку переключателя потоков ПП1 переведите в положение МН2. Ручку ПП2 переведите в положение У (увлажнитель). Вентиль В2 закройте. Штуцер ВХОД ГАЗА 2 через запорный вентиль соедините с источником сжатого газа.

На вход генератора подайте газ под давлением (0,95±0,05) МПа (9,5±0,5 кгс/см²). После выдержки в течение 30 мин закройте запорный вентиль на подводящей линии. Произведите отсчет показаний по манометру №2 через 15 и 45 мин. Определите спад давления за 30 мин. Спад давления не должен быть более 0,01 МПа (0,1 кгс/см²). Для понижения давления в пневмогидравлической системе генератора закройте вентиль В1 и дроссель РАСХОД .ВЛАЖНОГО ГАЗА. Откройте вентили В2 и В3 и дросселем РАСХОД ВЛАЖНОГО ГАЗА установите расход по ротаметру Р в пределах 0,3-0,4 л/мин.

Для проверки герметичности рабочей 8.6.4. камеры ручку переключателя ПП2 переведите в положение У, к штуцеру ВЫХОД ГАЗА подсоедините манометр с пределом измерений 0,1 МПа (1 кгс/см²), дроссель РАСХОД влажного газа и вентили В2 и ОТСЕКАТЕДЬ КАМЕРЫ (ВЗ) откройте вентиль В1 закройте. Штуцер ВХОД ГАЗА 2 соедините с источником сжатого газа и подайте газ под давлением 0,1 МПа. По манометру, подключенному к штуцеру ВЫХОД ГАЗА, наблюдают за повышением давления в пневмогидравлической системе генератора и при достижении давления 0,09-0,095 МПа (0,9-0,95 кгс/см²) закройте вентиль ОТСЕКАТЕЛЬ КАМЕРЫ. По манометру определите спад давления в рабочей камере за 15 мин. Спад давления не должен быть более 5 кПа $(0.05 \text{ krc/cm}^2).$

- 8.6.5. Для проверки герметичности осушителя к штуцеру к ВНЕШНЕМУ ГИГРОМЕТРУ подсоедините манометр с пределом измерений 1 МПа
- (10 кгс/см²), дроссель РАСХОД влажного газа (ДР) и вентиль ОТСЕКАТЕЛЬ КАМЕРЫ (ВЗ) закройте. Вентиль (В4) РАСХОД сухого газа откройте. Штуцер ВХОД ГАЗА 3 через запорный вентиль соедините с источником сжатого газа. В систему подайте газ под давлением 1 МПа (10 кгс/см²). По манометру, подключенному к штуцеру к ВНЕШНЕМУ ГИГРОМЕТРУ, наблюдайте за повышением давления в осушителе и при достижении давления 0,9-0,95 МПа (9-9,5 кгс/см²) запорный вентиль на линии, подводящей газ к генератору закройте и по манометру определите спад давления в осушителе за 15 мин. Спад давления не должен быть более 5 кПа (0,05 кгс/см²).
 - 8.7. Промывка насытителя.
- 8.7.1. Промывку насытителя производить один раз в год следующим образом:
- 1) отсоедините насытитель от пневмогидравлической системы и панели генератора;
 - 2) разберите насытитель;
- 3) промойте этиловым спиртом или ацетоном цилиндры, штуцера, трубки и внутренние поверхности фланцев, брызгоотделитель, стеклянную насадку;
- 4) замените фильтрующий материал на свежий (из комплекта ЗИП) в фильтре, находящемся в брызгоотделителе;
 - 5) соберите насытитель;
- 6) проверьте насытитель на герметичность при давлении 1,0 МПа (10 кгс/см 2 по п. 8.7.2.

Примечание: Набивка фильтра фильтрующим материалом должна быть слабой, для уменьшения перепада давления на фильтре.

- 8.7.2. Для проверки насытителя на герметичность:
- 1) заглушите центральный штуцер на крышке и боковой штуцер на дне насытителя герметичными заглушками;
- 2) к боковому штуцеру на крышке насытителя присоедините манометр с наибольшим значением диапазона измерений 1,0 МПа (10 кгс/см²);
- 3) соедините штуцер вход газа (расположен на дне насытителя) через герметичный запорный вентиль с источником сжатого газа;
 - 4) опустите насытитель в емкость с водой;
- 5) подайте в насытитель газ под давлением 1,0 МПа (10 кгс/см²) и закройте вентиль;
- 6) убедитесь в герметичности насытителя по отсутствию пузырьков газа, выходящих из насытителя;
- 7) установите насытитель на панель и подключите его к пневмогидравлической системе генератора.

- 8.8. Допускается замена в генераторе манометра и термометров на аналогичные, имеющие свидетельства о государственной поверке.
 - 8.9. Юстировка задатчика температуры
- 8.9.1. Юстировку задатчика температуры проводите при разности показаний задатчика температуры и термометра ТЛ4 более 0,5°C.
- 8.9.2. Установите температуру термостатирования 30-40°С. После установления режима термостатирования отверните два винта и снимите декоративную крышку на верхней панели генератора. С помощью отвертки через отверстия в крышке датчика температуры (чертёж 5К5.182.043) установите движки переменных электрических емкостей С9 и С12 в такое положение, в котором показания цифрового дисплея совпадали с показаниями термометра ТЛ4.
- 8.9.3. С помощью задатчика установите температуру термостатирования (40±3)°С.

После установления режима термостатирования сравните показания термометра ТЛ4 с заданным значением температуры. Если разность указанных значений температур не удовлетворяет требованиям, повторите юстировку по п.8.9.2.

8.10. Поверку генератора при эксплуатации производите в соответствии с инструкцией по поверке 5К2.844.100 ДП, в сроки, установленные по ГОСТ 8.513-84. Рекомендуемый межповерочный интервал один год.

9. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

9.1. Перечень возможных неисправностей и способы их устранения приведены в таблице 4.

Таблица 4.

Наименование неисправности и её внешнее проявление	Вероятная причина	Способ устранения
1. Не устанавливается постоянное значение ОДВ ПГС или относительная влажность ПГС изменяется случайным образом (наблюдение по регистрирующему прибору подключённого гигрометра).	Изменяется температура термостата случайным образом. Прекратилось перемешивание термостатирующей жидкости (порыв пассика, слетела крыльчатка с оси смесителя).	Проверить исправность смесителя. Проконтролировать изменение температуры термостата по термометру. Устранить неисправность.
2. ОДВ ПГС постоянно растёт	1) повышается температура термостата (отказал терморегулятор). 2) понижается давление газа в насытителе. Кончился газ в баллоне или отказал редуктор.	Проконтролировать тем- пературу термостата по термометру и давлению газа в насытителе по манометру. Устранить неисправность.

Наименование неисправности и её внешнее проявление	Вероятная причина	Способ устранения
3. ОДВ ПГС быстро понижается.	1) перегорел предохранитель и отключился нагрев. 2) быстрое повышение давления газа в насытителе и увлажнителе. 3) кончилась вода в насытитителе или увлажнителе.	Проконтролировать температуру термостата и давление газа в насытителе (увлажнителе). Неисправность устранить. Залить воду в насыти-тель, перезаполнить увлажнитель.
4. При работе генератора в режиме 2 ОДВ ПГС значительно (в 5-6 раз) отличается от рассчитанного значения.	Разгерметизировался увлажнитель или пневмосистема. Вода из термостата попадает в газовый канал или увлажнитель.	Проверить на герметич- ность систему и увлаж- нитель.
5. При открывании дросселя влажного газа (ДР) ПГС не поступает на выход генератора.	Сломалась игла дросселя.	Снять дроссель и отремонтировать, заменив иглу.
6. В режиме получения осу- шенного газа не удается получит сухой газ.	Увлажнилась пятиокись фосфора в осушителе.	Перезаполнить осушитель.
7. При работе генератора в режиме 1 плохо регулируется расход газа на выходе генератора даже при значительном (0,5-0,8 МПа) давлении газа в насытителе.	Забился фильтр (из ткани Петрянова) в насытителе.	Снять насытитель и заменить фильтр.

10. СВИДЕТЕЛЬТСВО О ПРИЕМКЕ

10.1. Генератор в	влажного газа обра	зцовый РОДНИК-4 заводской
номер сос	тветствует техничес	ски условиям 5K2.844.100ТУ <i>и</i>
признан годным к экспл	уатации.	
Дата выпуска «	_»	20 г.
Lleve Transport		1
Начальник ОТК _{подг}	INCP	Ф.И.О.
Главный метролог		/
•	подпись	Ф.И.О.
МП		
М.П.		

11. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 11.1. Генератор должен быть принят техническим контролем предприятия-изготовителя. Изготовитель гарантирует соответствие генератора требованиям технических условий 5К2.844.100ТУ при соблюдении потребителем условий эксплуатации, транспортирования и хранения, установленных настоящим паспортом.
- 11.2. Гарантийный срок эксплуатации устанавливается 18 месяцев со дня ввода генератора в эксплуатацию.
- 11.3. Гарантийный срок хранения 6 месяцев с момента приёмки генератора техническим контролем предприятия-изготовителя.
- 11.4. Послегарантийный ремонт генератора осуществляет предприятие-изготовитель по договору с предприятием-изготовителем.

12. СВЕДЕНИЯ О КОНСЕРВАЦИИ И УПАКОВКЕ

Генератор влажного газа образцовый ТУ6-91 5К2.844.1	OΤУ,
заводской номер законсервирован и упакован согл	тасно
гребованиям технических условий ТУ6-91 5К2.844.100ТУ.	
Срок консервации 2 года	
Дата консервации «» 20 г.	
Дата упаковки «» 20 г.	
Упаковку и	
консервацию произвёл/	
Изделие после упаковки	
и консервации принял/	
М.П.	

13. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

13.1. При обнаружении неисправностей генератора составляется акт, в котором указывается характер неисправности, подписывается комиссией, утверждается главным инженером и направляется на предприятие-изготовитель по адресу:

665821 Иркутская обл., г. Ангарск, а/я 423

14. ДАННЫЕ АТТЕСТАЦИИ УВЛАЖНИТЕЛЯ

ратура увлаж- нителя, °C	давление га- за в увлажни- теле, МПа (кгс/см²)	млн ⁻¹	щий коэф- фициент	Кто проводил аттестацию (фамилия, должность)	пись
	увлаж- нителя,	увлаж- за в увлажни- нителя, теле,	увлаж- за в увлажни- нителя, теле,	увлаж- за в увлажни- нителя, теле, фициент	увлаж- за в увлажни- фициент тацию (фамилия,

15. ДАННЫЕ О ПОВЕРКЕ ГЕНРАТОРА

Дата поверки	Результат поверки (годен, не годен)	Должность, фамилия представителя поверочного органа	Роспись, дата и клеймо представительного органа

16. ПЕРЕЧЕНЬ ПРИЛОЖЕНИЙ

- Приложение 1. Таблицы характеристик насыщенного водяного пара во влажном газе.
- Приложение 2. Расчёты доверительных границ абсолютной и относительной погрешности генератора при воспроизведении генератором соответственно оносительной влажности и объёмной доли влаги ПГС.
- Приложение 3. Таблицы значений атмосферного давления, выраженных в мм рт. ст. и кгс/см².
- Приложение 4. Значение коэффициента Z в зависимости от температуры и абсолютного давления газа.

Приложение 1.

Характеристики насыщенного водяного пара во влажном газе при температуре от 0 до 90°С ⁴ (В н

		•
7	•	-
	Ω	į
	Ξ]
	ì	1
	F	٠.
۹	_	,
	α	
ľ	_	-

ပ္	0,0	1,0	0,2	0,3	6,4	0,5	9,0	0,7	8,0	6,0
0	6030	4,882	6120	6166 4,951	6211 4,985	6256 5,020	6302 5,054	6347 5,089	6392 5,123	6437 5,158
+	6483 5,192	653† 5,229	5,265	6627	6675 5,338	6724 5,375	6772 5,412	6820 5,448	6868 5,485	6916 5,521
+2	6965 5,558	7016 5,597	7068 5,636	7419 5,675	5,714	7222 5,753	5,791	7325 5,830	7376 5,869	7428 5,908
r.	7479 5,947	7534 5,988	7589 6,029	7643 6,071	7698 6,112	7753 6,153	7808 7 6,194	7862 6,235	7917 6,277	7972 6,318
4+	8027 6,359	8085 6,40	8143 6,45	8201 6,49	8259 6,53	8318 6,58	8378 6,62	8434	8492	8550 6,75
5+	9609 6,80	8671,3 6,84	8733,4 6,89	8795,5 6,93	8857 6,98	8919 7,03	8981 7,07	9044 7,12	9106	9168
9+	9230 7,26	9295 7,30	9361 7,36	9426 7,41	9492 7,45	9557 7,50	9623 7,55	9898	9754 7,65	9820 7,70

* см. примечания к таблице

8,22 8,76 9,34 11,99 9,95 10,59 12,75 13,55 11,27 6,0 11,92 12,67 13,47 9,28 8,0 10,53 11/2 68'6 8,71 8,65 11,85 13,60 9,83 13,38 10,46 0,7 9,22 8,11 9,76 8,60 9,16 13,30 9,0 10,40 12,52 90'8 8,54 12,44 13,22 0,5 10,33 1,00 11,70 8,0 9,70 9,11 11,63 9,05 10,98 7,95 13,14 8,49 4,0 12,37 10,27 7,90 10,20 11,56 8,43 10,06 12,29 13,06 6,3 8,99 8,58 7,85 10,14 12,22 12,98 0,2 11,49 8,93 9,52 8,3 9,46 10,73 12,90 ٩. 12,14 10,08 7,80 11,41 8,87 11,34 8,27 8,82 9,40 10,66 12,06 12,83 10,01 0,0 7,75 Tenneparypa, +12 +15 ÷ 6+ +

Продолжение таблицы 1.

Температура, °С	0,0	0,1	0,2	0,3	0,4	9,6	9,0	7,0	8,0	6,0
+16	13,63	18058 13,71	18177 13,80	18298 13,88	18419 13,96	18540 14,05	18664 14,13	18785 14,22	18906 14,30	19027 14,39
+17	14,47	19272	19393 14,65	19516 14,74	19637 14,83	19760 1491	19881 15,00	20002 15,09	20123 15,19	20244 15,280
+18	20368 15,366	20499,6 15,46	20630	20761 15.64	20893 15,74	21025 15,83	21156 15,92	21288 16,02	21419 16,11	21551 16,21
+19	21684 16,30	21823 16,40	21964 16,50	22103/ 16,60	(6,70)	22382 46,79	22521 16,90	22663 17,00	28804 17,10	22945 17,19
+20	23086 17,29	23231 17,39	23376 17,50	23522 17,60	23667 17,70	23812 17,80	23961 17.91	24110	24259 18,12	24408 18,22
+24	24556 18,33	24709 18,44	24863 18,55	25016 18,65	25169 18,76	25322 18,87	25479 18,98	25636	25793 19,20	25951 19,31
+22	26108 19,42	26270 19,54	26431 19,65	26593 19,76	26754 19,88	26916 19,99	27082 20,11	27248 20,22	27413 20,34	27579 20,45
+23	27745 20,57	27915 20,69	28085 20,81	28256 20,93	28426 21,05	28596 21,17	28771 21,29	28940 21,41	29121 21,53	29296 21,65
+24	29470 21,78	29650 21,90	29829 22,03	30009 22,15	30188 22,27	30368 22,40	30552 22,53	30736 22,66	30920 22,7	31105 22,91

24,24 25,62 35,47 30,21 33,64 31,88 28,61 37,40 27,08 25,48 26,93 33,46 35,29 28,45 37,29 8,0 24,10 30,04 41216 29,88 25,34 23,97 35,10 33,28 0,7 31,37 23,83 38675 28,14 33,10 34,91 34405 25,20 26,64 9,0 36,81 27,98 ¥0741 29,56 34,73 31,20 36,61 32,92 0,5 26,49 25,06 23,57 24,92 29,40 31,03 34,54 36,42 4,0 32,75 38008/27,68 32,58 30,87 34,36 6,3 29,24 36,23 23,44 28,20 29,08 24,65 27,53 36,04 23,38 0,2 20,78 32,40 34,18 23,17 28,92 30,53 25,91 35,85 32,23 27,38 ٥. 34,00 23,04 24,37 35,66 30,37 0,0 27,23 33,82 28,76 32,05 Tekineparypa, °C +25 +26 +28 +29 +30 +32 +33 +27 +34

Продолжение таблицы 1.

6,0

46,0 39,41 48,40 59,08 41,51 56,24 6,0 50,90 53,52 58,80 48,16 39,20 53,26 43,49 55,96 8,0 45,77 \$0,65 41,30 58,40 39,00 55,69 58, 41,09 45,54 0,7 47,92 50,15 58,23 40,88 43,5 45,31 47,68 52,73 9,0 55,42 47,44 40,67 49,90 52,47 55,15 57,94 38,60 0,5 42,83 45,08 49,65 44,85 47,20 40,46 57,66 52,21 4,0 42,60 38,40 54,88 40,24 42,38 44,62 51,94 57,37 46,96 0,3 49,40 54,60 49,15 46,72 51,68 54,33 57,08 0,2 40,03 48,89 44,16 56,80 39,82/ 46,48 ٥, 36,80 51,42 54,05 41,94 41,72 53,78 37,60 39,61 46,23 48,64 43,93 0,0 51,16 56,52 Teumeparypa, °C +34 +35 +36 +38 +33 ? +42 +37 \

Продолжение таблицы 1.

Температура, °С	0,0	0,1	0,2	0,3	0,4	6,6	9,0	7,0	8,0	6,0
+43	85490	85947	86404	86861	87318	87775	88232	88689	89146	89608
	59,37	59,67	59,97	60,26	60,56	60,86	61,16	61,46	61,75	62,05
+44	90060 62,35	90538	91016	91495 63,28	91978 63,59	92452 63,90	92930 64,21	93408 64,52	93887 64,83	94365 65,14
+45	94844 65,45	95343 65,78	95843	96343 66.42	96843 66,75	97342 67,07	97842 67,39	98341 67,72	98841 68,04	99341 68,36
+46	99840 68,69	100362 69,02	100884 69,36	101406 69,70	70,13	102450 70,37	102972 70,71	103494 71,04	104016 71,38	104538 71,71
+47	105060 72,05	105605 72,40	106150 72,75	106695 73,10	107239 73,45	73,80	108329	108874	109419 74,85	109963 75,20
+48	110508	111078	111648	112218	112788	113358	113928	174498	11,5068	115638
	75,55	75,92	76,28	76,65	77,01	77,38	77,74	78471	78,47	78,84
+49	116208	116804	117398	117994	118589	119184	119780	120375	120970	121566
	79,20	79,58	79,96	80,34	80,72	81,10	81,48	81,86	82,24	82,62
+50	122161	122782	123402	124023	124643	125264	125885	126505	127126	127747
	83,00	83,40	83,79	84,19	84,58	84,98	85,	85,76	86,16	86,55
+51	128367	129015	129663	130311	130960	131608	132256	132904	133552	134200
	86,95	87,36	87,77	88,18	88,59	89,00	89,41	89,83	90,24	90,65

Продолжение таблицы 1.

Температура, °С	0,0	0,1	0,2	0,3	6,4	6,0	9,0	7,0	8,0	6,0
+52	134848	135524 91,49	136200 91,91	136876 92,34	137552 92,77	138228 93,19	138904 93,62	139979 94,05	140255 94,44	140931 94,90
+53	141607 95,33	142311	143015	143718 96,66	144422 97,10	145126 97,54	145830 98,00	146533 98,43	147237 98,87	147941 99,32
+54	148645 99,76	149379 100,23	1000/68	150848	151583 101,60	152317 102,07	153052 102,53	153786 103,00	154521 103,45	155255 103,91
+55	155990 104,37	156755 104,85	157520 105,33	158286 105,81	159051	159817	160582 107,24	161347 107,72	162113 108,20	163878 108,68
+56	163644 109,16	164441 109,66	165238 110,15	166036 110,65	166833 111,15	767630 111,6	168428	169225	170023 113,14	170820 113,68
+57	171618 114,13	172447 114,65	173276 115,16	174106 115,68	174936 116,19	175765 116,71	176595 117,23	177424	178254 188,26	179084 118,77
+58	179913 119,29	180778 119,33	181642 120,36	182507 120,90	183371 121,43	184236 121,97	185100 122,50	185965 123,04	123,57	187694 124,11
+59	188558 124,64	189458 125,20	190357 15,75	191257 126,31	192156 126,96	193055 127,42	193955 127,97	194854 128,53	195754 129,08	196653 129,64
09+	197552 130,19	198488 130,77	199424 131,34	200359 131,92	201295 132,49	202230 133,07	203166 133,65	204102 134,22	205037 134,80	205973 135,27

Продолжение таблицы 1.

Температура, °С	0,0	0,1	0,2	0,3	0,4	6,5	9,0	7,0	8,0	6,0
+61	206908	207882	208856	209830	210804	211778	212751	213725	214699	215673
	135,95	136,55	137,15	137,74	138,34	138,94	13954	140,14	140,73	141,33
+62	216647 141,93	217659	218672	219685 143,79	220698 144,41	221711 145,03	222724 145,64	223736 146,26	224749 146,88	225762 147,50
+63	226775 148,12	227827 148,76	228879	229931	230983 150,68	232035 151,33	233087 151,97	234139 152,61	295191 153,25	296243 153,89
+64	237295 154,53	238389 155,20	239483 156,86	240 <i>577</i>	241672	242766	243860 158,52	244954 159,19	246049 159,85	247143 160,52
+65	248237	249374	250511	251648	252785	253922	255058	256195	257332	258469
	161,18	161,87	162,56	163,24	163,93	164,62	165,31	366,00	166,68	167,37
99+	259606 158,06	260786 168,77	261965 169,49	263145 170,20	264325 170,91	265505 171,63	266684 172,34	267864	269044 173,76	270223 174,48
L9+	271403	272629	273855	275082	276308	277534	278760	279987	281213	282439
	175,19	175,93	176,67	177,40	178,14	178,88	179,62	180,36	181,09	181,83
89+	283665	284938	286211	287484	288758	290031	291304	292577	293850	295123
	182,57	183,33	184,10	184,86	185,62	186,39	187,15	187,91	188,67	189,44
69+	296396	297718	299039	300361	301682	303004	304325	305647	306968	308296
	190,20	191,00	191,78	192,57	193,36	194,15	194,94	195,73	196,52	197,31

321940 336104 213,87 398189 250,48 415144 260,40 450889 381821 240,87 205,45 350803 366031 432695 222,58 231,58 270,63 281,21 6,0 41|3442 259,40 334683 213,02 364502 430934 449063 396546 320570 380237 204,64 349327 221,70 230,67 239,95 249,51 269,61 8,0 429173 268,58 362972 378652 394904 347852 447237 279,09 333261 319201 203,82 411741 220,83 239,00 258,40 229,77 0,7 377068, 238,07 331840 361433 410039 427412 346377 445411 278,03 211,33 219,95 393261 247,58 267,55 317831 203,00 228,87 257,41 9,0 375483 344902 391619 443586 330418 359914 316461 202,19 210,49 219,08 237,14 246,62 408338 256,42 425651 276,97 227,97 266,53 0,5 358385 227,06) 441760 275,90 328997 209,65 343427 373898 389976 406637 423889 315091 245,66 255,42 265,50 201,37 218,21 236,21 4,0 327575 356856 372314 422128 264,47 439934 274,84 226,16/ 208,80 235,28 388334 404935 254,43 313721 200,55 341952 217,33 244,69 0,3 340476 216.46 370729 438108 273,78 403234 326153 207,96 355326 420367 199,73 225,26 386691 243,76 253,43 312351 234,34 263,44 0,2 324732 369145 385049 242,76 418606 436282 272,72 310981 353797 401532 198,92 215,58 224,35 233,41 252,44 262,42 339001 ٥, 328810 206,27 337526 383406 241,80 434456 271,66 352268 367560 98,10 232,48 416845 309611 223,45 399831 351,44 261,39 214,71 0,0 Температура, +70 +74 +75 +78 +71 +72 +73 +76 +77

54

Продолжение таблицы 1.

Температура, °С	0,0	0,1	0,2	0,3	0,4	6,6	9,0	7,0	8,0	6,0
+79	452715	454605 283,37	456494 284,46	458384 285,56	460274 286,65	462164 287,75	464053 288,84	465943 289,94	467833 291,03	496722 292,13
+80	471612 293,22	234,35	475523	477478 296,61	479434 297,74	481389 298,87	483344 300,00	485300 301,13	487255 302,26	489211 303,39
+81	491166 304,52	493789 305,69	306/85	497235 308.02	499258 309,18	501281 310,35	503304 311,51	505327 312,68	507350 316,84	509373 315,01
+82	511396 316,17	513489 317,37	515582 318,57	319,77	\$19768 \$20,97	521861 322,18	523954 323,38	526047 324,58	528140 325,78	530233 326,98
+83	532326 328,18	534492 329,42	536657 330,66	538823 331,90	540989 333,14	543155 334,38	545320	336,86	549652 338,10	511817 339,34
+84	553983 340,58	556223 341,86	558463 434,14	560702 344,41	562942 345,69	565182 346,97	567422 348,25	569662 349,53	\$71901 350,80	574141 352,08
+85	576381 353,36	578694 354,68	581008 355,99	583321 357,31	585634 358,62	587948 359,94	590261 361,26	592574 362,57	594887 363,89	597201 365,20
98+	599514 366,52	601909 367,88	604304 369,24	806698 370,59	609093 371,95	611488 373,31	613383 374,67	616278 376,03	618672 377,38	621067 378,74
+87	623462 380,10	625934 381,50	628406 382,89	630877 384,29	633349 385,69	635821 387,09	638293 388,48	640765 389,88	643236 391,28	645708 392,67

697466 421,82 724647 437,05 671157 407,02 6,0 668604 405,58 721920 435,52 694827 420,33 8,0 434/2 692187 418,85 666051 0,7 689548 417,36 663498 716467 432,48 402,70 9,0 430,94 660945 686908 415,88 401,27 0,5 741013 658392 399,83 684268 414,40 429,41 4,0 708286 427,88 655839 398,39 681629 412,91 0,3 678989 411.43 653286 705560 426,37 396,95 0,2 650733 395/51 702833 424,83 409,94 ٥, 394,07 673710 700106 423,30 727374 438,58 408,46 0,0 Температура, +88 +89 +90 +91

Примечания:

- 1. Для каждого значения температуры объёмная доля влаги выражена в млн⁻¹ (верхняя строка) и абсолютная влажность в г/м³ (нижняя строка).
- 2. Таблица составлена по ГСССД, М.П. Вукалович, С.П. Ривкин, А.А. Александров. Таблицы тепло-физических свойств воды и водяного пара, издательство стандартов, Москва, 1969 г. стр. 227.
- 3. Перевод удельного объёма сухого насыщенного пара (υ, м³/г) для температуры (Т, К) в объёмную долю влаги (В, млн¹) произведён по формуле:

$$B = \frac{10^6 \cdot V_0 \cdot T}{v \cdot M \cdot T_0},$$

где $V_0 = 22,4129$ — объём моля газа по углеродной шкале при нормальной температуре $T_0 = 273,15$ К и нормальном давлении $P_0 = 101,325$ кПа (760 мм.рт. ст.), л/г моль; M = 18,016 масса моля воды, г.

4. Значения влажности, соответствующие десятым долям градуса, рассчитаны по линейной интерполяции.

Объёмная доля влаги насыщенного водяного пара во влажном газе, млн-1 (ррm) при темпрературе от -99 до 0°C

Таблица 2.

Температура, °C	0,0	0,1	0,2	0,3	0,4	0,5	9,0	2,0	8,0	6'0
66-	0,0169	0,0166	0,0163	0,0160	0,0156	0,0153	0,0150	0,0147	0,0144	0,0141
86-	0,0207	0,0203	0,0199	0,0195	0,0191	0,0187	0,0184	0,0180	0,0176	0,0173
-97	0,0203	0,0248	0,0243	0,0238	0,0233	0,0229	0,0224	0,0220	0,0216	0,0211
96-	0,0307	0,0301	0,0296	0,0290	0,0284	0,0279	0,0273	0,0268	0,0262	0,0258
-95	0,0373	0,0366	0,0359	0,0352	0,0345	0,0339	0,0332	0,0326	0,0320	0,0313
-94	0,0452	0,4430	0,0435	0,0427	0,0419	0,0411	0,0403	0,0395	0,0388	0,0380
-93	0,0546	0,0536	0,0526	0,0516	0,0507	0,0497	0,0488	0,0478	0,0470	0,0461
-92	0,0359	0,0647	0,0635	0,0623	0,0612	0,0600	0,0589	0,0578	0,0567	0,0557
-91	0,0794	0,0779	0,0765	0,0751	0,0738	0,0724	0,0710	0,0697	0,0684	0,0672
06-	0,0954	0,0370	0,0920	0,0903	0,0886	0,0870	0,0855	0,0839	0,0824	6080'0
68-	0,1144	0,1123	0,1103	0,1083	0,1064	0,1045	0,1026	0,1007	0,0989	0,0971
-88	0,1369	0,1345	0,1321	0,1298	0,1274	0,1252	0,1229	0,1208	0,1186	0,1165
-87	0,1636	0,1607	0,1579	0,1551	0,1524	0,1497	0,1470	0,1444	0,1419	0,1394
-86	0,1950	0,1916	0,1883	0,1850	0,1818	0,1786	0,1755	0,1725	0,1694	0,1665

Продолжение таблицы 2.

Температура, °C	0,0	0,1	0,2	0,3	0,4	0,5	9,0	0,7	0,8	6,0
-85	0,2321	0,2281	0,2242	0,2203	0,2170	0,2130	0,2091	0,2060	0,2020	0,1985
-84	0,2757	0,2711	0,2664	0,2619	0,2574	0,2530	0,2487	0,2445	0,2403	0,2362
-83	0,3270	0,3215	0,3161	0,3108	0,3055	0,3004	0,2953	0,2903	0,2853	0,2805
-82	0,3871	0,3807	0,3743	0,3681	0,3619	0,3559	0,3499	0,3441	0,3383	0,3326
-81	0,4575	0,4499	0,4425	0,4352	0,4280	0,4209	0,4139	0,4071	0,4003	0,3937
-80	0,5397	0,5309	0,5222	0,5137	0,5053	0,4970	0,4888	0,4808	0,4729	0,4651
-79	0,6356	0,6254	0,6152	0,6058	0,5955	0,5858	0,5763	0,5669	0,5577	0,5486
-78	0,7474	0,7354	0,7236	0,7120	0,7006	0,6894	0,6783	0,6674	0,6566	0,6460
-77	0,8773	0,8634	0,8497	0,8363	0,8230	0,8099	0,7970	0,7843	0,7718	0,7595
-76	1,0282	1,0121	0,9962	9086'0	0,9651	0,9499	0,9350	0,9202	0,9057	0,8914
-75	1,2032	1,1845	1,1660	1,1479	1,1300	1,1125	1,0951	1,0780	1,0611	1,0446
-74	1,4657	1,3841	1,3627	1,3417	1,3211	1,3007	1,2806	1,2608	1,2414	1,2221
-73	1,6397	1,6147	1,5901	1,5659	1,5420	1,5185	1,4952	1,4724	1,4498	1,4276
-72	1,9098	1,8811	1,8527	1,8247	1,7971	1,7699	1,7431	1,7168	1,6907	1,6650
-71	2,2212	2,1880	2,1553	2,1231	2,0913	2,0600	2,0291	1,9986	1,9686	1,9390

Продолжение таблицы 2.

Температура, °C	0,0	0,1	0,2	0,3	0,4	0,5	9,0	0,7	0,8	6,0
-70	2,5794	2,5412	2,5037	2,4666	2,4300	2,3940	2,3585	2,3234	2,2889	2,2547
69-	2,9911	2,9473	2,9041	2,8616	2,8195	2,7781	2,7372	2,6970	2,6572	2,6180
-68	3,4635	3,4133	3,3638	3,3150	3,2667	3,2192	3,1724	3,1261	3,0805	3,0355
29-	4,0049	3,9474	3,8907	3,8348	3,7795	3,7250	3,6714	3,6184	3,5660	3,5144
99-	4,6245	4,5588	4,4939	4,4299	4,3667	4,3044	4,2429	4,1822	4,1223	4,0633
-65	5,3327	5,2576	5,1835	5,1103	5,0381	4,9669	4,8966	4,8227	4,7587	4,6912
-64	6,1410	6,0554	5,9708	5,8873	5,0049	5,7236	5,6433	5,5642	5,4860	5,4088
-63	7,0427	6,9648	6,8685	6,7734	6,6794	6,5867	6,4952	6,4049	6,3158	6,2279
-62	8,1114	8,0004	7,8907	7,7824	7,6756	7,5700	7,4659	7,3630	7,2616	7,1614
.	9,3042	9,1780	9,0533	8,9303	8,8088	8,6888	8,5703	8,4534	8,3379	8,2240
09-	10,659	10,516	10,374	10,234	10,096	0096'6	9,8258	9,6926	9,5613	9,4320
-59	12,195	12,033	11,873	11,714	11,557	11,403	11,250	11,100	10,951	10,804
-58	13,935	13,752	13,570	13,391	13,213	13,038	12,866	12,695	12,326	12,359
-57	15,905	15,697	15492	15,288	15,088	14,890	14694	14,501	14,310	14,122
-56	18,131	17896	17,633	17,434	16,208	16,984	16,763	16,544	16,329	16,115

Продолжение таблицы 2.

Температура, °C	0,0	0,1	0,2	0,3	0,4	0,5	9,0	2,0	0,8	6,0
-55	20,642	20,378	20,115	19,857	19,601	19,349	19,089	18,852	18,609	18,369
-54	23,476	23,177	22,882	22,591	22,302	22,017	21,736	21458	21,182	20,911
-53	26,677	26,330	25,998	25,670	25,345	25,024	24,707	24,394	24,084	23,778
-52	30,256	29,878	29,504	29,135	28,770	28,409	28,052	27,700	27,352	27,007
-51	34,291	33,866	33,446	33,030	32,621	32,215	31,814	31,418	31,026	30,639
-50	38,820	38,343	37,871	37,405	36,945	36,490	36,039	35,595	35,155	34,720
49	43,897	43,363	42,835	42,313	41,797	41,286	40,782	40,282	39,789	39,301
48	49,587	48,989	48,397	47,812	47,234	46,662	46,096	45,538	44,985	44,438
47	55,953	55,283	54,622	53,968	53,321	52,681	52,048	51,423	50,804	50,192
46	63,069	62,322	61,582	60,851	60,127	59,413	58,705	58,005	57,314	56,630
45	71,017	70,182	69,357	68,540	67,733	66,984	66,144	65,363	64,590	63,825
-44	79,884	78,963	78,032	77,121	76,220	75,329	74,448	73,576	72,714	71,861
43	89,766	88,728	87,703	86,687	85,684	84,691	83,709	82,737	81,775	80,824
-42	100,76	99,610	98,475	97,340	96,225	95,120	94,024	92,939	91,873	90,817
4	113,00	111,72	110,46	109,20	107,96	106,73	105,51	104,31	103,11	101,93

Продолжение таблицы 2.

Температура, °C	0,0	0,1	0,2	6,0	0,4	0,5	9,0	0,7	8,0	6,0
-40	126,61	126,18	123,77	122,38	121,00	119,62	118,27	116,94	115,62	114,31
-39	141,71	140,12	138,56	137,01	135,48	133,96	132,46	130,97	129,50	128,05
-38	158,46	156,70	154,97	153,25	151,55	149,87	148,21	146,56	144,92	143,31
-37	177,02	175,08	173,16	171,25	169,37	167,50	165,66	163,83	162,02	160,24
-36	197,58	195,43	193,30	191,20	189,10	187,04	185,00	182,98	180,97	178,99
-35	220,31	217,94	215,58	213,25	210,94	208,67	206,40	204,16	201,94	199,75
-34	245,45	242,82	240,22	237,64	235,09	232,57	230,07	227,59	225,15	222,72
-33	273,20	270,30	267,43	264,50	261,77	258,98	256,22	253,48	250,78	248,10
-32	303,81	300,62	297,45	294,31	291,21	288,13	285,08	262,07	279,08	276,12
-31	337,57	334,04	330,25	327,10	323,67	320,29	316,92	313,60	310,31	307,04
-30	374,74	370,87	367,03	363,22	359,45	355,72	352,02	348,35	344,72	341,13
-29	415,70	411,40	407,20	403,00	398,80	394,70	390,70	386,60	382,60	378,70
-28	460,70	456,00	451,30	446,70	442,20	437,60	433,20	428,70	424,30	420,00
-27	510,1	504,9	499,8	494,8	489,8	484,8	479,9	475,0	470,2	465,4
-26	564,4	558,7	553,1	547,6	542,1	536,6	531,2	525,9	520,6	515,3

Продолжение таблицы 2.

Температура, °C	0,0	0,1	0,2	0,3	0,4	0,5	9,0	0,7	8,0	6,0
-25	623,9	617,7	611,6	605,5	599,4	593,5	587,5	581,7	6,575	570,1
-24	689,2	682,4	675,7	0'699	662,4	655,8	649,3	642,9	636,5	630,2
-23	7,097	753,2	745,9	738,6	731,3	724,1	717,0	710,0	703,0	696,1
-22	838,9	830,8	822,7	814,7	8,908	798,9	791,2	783,4	775,8	768,2
-21	924,5	915,6	8'906	0,686	889,4	8,088	872,3	863,8	855,5	847,2
-20	1018	1008	9,866	1,686	9,626	970,2	961,0	951,7	942,6	933,5
-19	1120	1110	1099	1089	1078	1068	1058	1048	1038	1028
-18	1232	1220	1209	1197	1186	1175	1164	1253	1142	1131
-17	1353	1341	1328	1316	1303	1291	1279	1267	1255	1243
-16	1486	1472	1458	1445	1431	1418	1405	1392	1379	1366
-15	1630	1615	1600	1585	1571	1556	1542	1528	1513	1499
-14	1787	1770	1754	1738	1722	1707	1691	1675	1660	1645
-13	1957	1940	1922	1905	1887	1870	1853	1836	1820	1803
-12	2143	2124	2104	2086	2067	2048	2030	2011	1993	1975
1-	2344	2323	2303	2282	2262	2241	2221	2201	2182	2162

Продолжение таблицы 2.

0,1
2518
2751 2727
3004 2977
3277 3249
3574 3543
3895 3061
4241 4205
4616 4577
5020 4979
5457 5412
5928 5879

Таблица рассчитана по одобренным методической комиссией Главной Геофизической обсерватории им. А.И. Воейкова «Психометрическим таблицам», Гидрометеоиздат, Ленинград, 1972 г., с. 225

Приложение 2.

при получении парогазовой смеси с воспроизводимой относительной влажностью Доверительные границы абсолютной погрешности генератора РОДНИК-4

Таблица 1.

	U										
Δφε , %	# = 70,05°C	90'0	0,20	0,40	0,75	0,23	0,29	95,0	0,42	0,52	09'0
¥	∆t = ±0,1°C	0,094	0,25	0,45	08'0	0,40	0,48	95'0	790	84'0	<u></u>
∆⊈ , % ∆t=±0,05°C	20°C	0€0'0∓	090'0∓	±0,045	±0,125	±0,155	±0,185	150-210	10,250	±0,275	00€'0∓
∆49 4,9 % ∆t=±0,05°C	30°C	±0,402	±0,804	±0,121	±0,161	±0,201	±0,241	±0,282	±0,322	±0,362	86£,0±
44 ∆t=±0	20°C	€90'0∓	±0,125	±0,189	±0,240	±0,315	40,377	P 440	±0,502	595'0∓	±0,622
∆		±0,013	±0,026	€0'0∓	±0,052	40,065	±0,978	±0,091	±0,104	±0,117	±0,130
∆q ₁, %		±0,04	±0,16	€6,0±	(±0,63	HO, 100	±0,15	±0,20	±0,25	±0,32	€6,0±
Пределы измерений	MTC/CM ²	0-10	0-10	1/0/10/	0-16	0-10	0-1,0	0-1'0	0-1,0	0-1,0	0-1,0
Абсолют- ное давле- ние газа в	насытите- ле, ктс/см²	10	\$	3,33	2,5	2,00	1,67	1,43	1,25	1,11	1,01
Относи- тельная	Блам- Ность, %	10	20	8	40	90	99	70	88	90	66

Примечания:

1. Доверительные границы абсолютной погрешности генератора рассчитаны по формуле:

$$\Delta \varphi_{\Sigma} = \Delta \varphi_{HAC} + \Delta \varphi_{0} \pm \alpha_{\Sigma} \sqrt{\left(\frac{\Delta \varphi_{P1}}{\alpha_{1}}\right)^{2} + \left(\frac{\Delta \varphi_{P2}}{\alpha_{2}}\right)^{2} + \left(\frac{\Delta \varphi_{\Delta t}}{\alpha_{3}}\right)^{2}},$$

- доверительная граница где $\Delta \phi_{\Sigma}$ суммарной абсолютной погрешности генератора при воспроизведении относительной влажности ПГС, %; систематическая составляющая $\Delta \phi_{\mathsf{HAC}}$ обусловленная погрешности генератора, неполнотой насыщения газа в насытителе, %; $\Delta \phi_0$ — не исключённый остаток систематической абсолютной погрешности составляющей генератора, обусловленный отклонением свойств реальных газов от свойств идеального газа, %; $\Delta \phi_{P1}$, $\Delta \phi_{P2}$ – пределы допускаемых случайных абсолютной составляющих погрешности обусловленных погрешностью генератора, измерения давления газа соответственно насытителе и рабочей камере, %; $\Delta \phi_{\Delta t}$ – доверительная случайной граница абсолютной погрешности составляющей обусловленная неравенством генератора, температуры насытителя и рабочей камеры, %.
- 2. α_{Σ} , α_{1} , α_{2} , α_{3} коэффициенты, определяемые доверительной вероятностью. Для доверительной вероятности 0,95 α_{Σ} = 2; α_{1} = 1,7; α_{2} = 1,7; α_{3} = 1,7.
- 3. $\Delta \phi_{\text{HAC}}$ пренебрежимо мала и в расчёте не учитывалась.
- 4. $\Delta \phi_0$ принята равной нулю для случая, когда поправочные коэффициенты вводятся в формулу расчёта относительной влажности на конкретный рабочий газ.
- 5. Доверительные границы случайной составляющей абсолютной погрешности генератора рассчитаны для случая, когда $\Delta t = 0.1$ °C и 0.05°C.

Доверительные границы относительной погрешности генератора РОДНИК-4 при получении парогазовой смеси с воспроизводимой объёмной долей влаги с помощью водяного насытителя

Таблица 2.

Абсолют- ное дав- ление газа в насы- тителе, кгс/см ²	Темпера- тура насы- тителя, °С	ОДВ (В), млн ⁻¹	δ B p, %	$\delta B'_{\Delta t}$, % ($\Delta t = 0,1^{\circ}C$)	δΒ" _{Δt} , % (Δt = 0,05°C)	δΒ' _Σ , %	δΒ" _Σ , %
10,0	15	1738	±0,40	±0,63	±0,31	0,88	0,60
5,0	15	3477	±0,80	±0,63	±0,31	1,20	1,00
3,5	15	4967	±1,13	±0,63	±0,31	1,52	1,37
2,0	15	8693	±0,20	±0,63	±0,31	0,78	0,43
1,5	15	11590	±0,27	±0,63	±0,31	0,81	0,48
10,0	20	2385	±0,40	±0,62	±0,31	0,87	0,60
5,0	20	4770	±0,80	±0,62	±0,31	1,20	1,00
3,5	20	6,814	±1,13	±0,62	±0,31	1,52	1,37
2,0	20	11924	±0,20	±0,62	±0,31	0,78	0,43
1,5	20	15900	±0,27	±0,62	±0,31	0,80	0,48
10,0	50	12574	±0,40	±0,49	±0,25	0,74	0,55
5,0	50	25148	±0,80	±0,49	±0,25	1,10	0,98
3,5	50	35926	±1,13	±0,49	±0,25	1,45	1,36
2,0	50	62870	±0,20	±0,49	±0,25	0,62	0,38
1,5	50	83827	±0,27	±0,49	±0,25	0,66	0,43
10,0	80	48265	±0,40	±0,40	±0,20	0,67	0,53
5,0	80	96530	±0,80	±0,40	±0,20	1,05	0,97
3,5	80	137900	±1,13	±0,40	±0,20	1,41	1,35
2,0	80	241328	±0,20	±0,40	±0,20	0,53	0,33
1,5	90	321770	±0,27	±0,40	±0,20	0,57	0,40
1,1	80	438778	±0,36	±0,40	±0,20	0,63	0,48

Примечания:

1. Доверительные границы относительной погрешности $(\delta B'_{\Sigma} \ u \ \delta B''_{\Sigma})$ генератора рассчитаны по формуле:

$$\delta B_{\Sigma} = \delta B_{HAC} + \delta B_0 \pm \alpha_{\Sigma} \sqrt{\left(\frac{\delta B_P}{\alpha_P}\right)^2 + \left(\frac{\delta B_{\Delta t}}{\alpha_t}\right)^2},$$

- где $\delta \mathsf{B}_{\mathsf{HAC}}$ систематическая составляющая относительной погрешности генератора, обусловленная неполнотой насыщения газа насытителе, %; δB_0 исключённая не систематическая составляющая относительной погрешности генератора, обусловленный отклонением свойств реальных газов от свойств идеального газа, %; доверительная граница случайной погрешности составляющей относительной генератора, обусловленная погрешностью измерения давления в насытителе, %; доверительная граница случайной погрешности составляющей относительной обусловленная погрешностью генератора, измерения температуры насытителя, %. α_{Σ} , α_{P} , α_{t} – коэффициенты, определяемые принятой доверительной вероятностью законом И распределения случайной составляющей погрешности.
- 2. α_{Σ} = 2; α_{P} = α_{t} = 1,7 для доверительной вероятности 0,95.
- 3. δВ_{нас} пренебрежимо мала и в расчёте не учитывалась.
- δВ₀ принята равной нулю для случая, когда поправочные коэффициенты вводятся в формулу расчёта объёмной доли влаги на конкретный рабочий газ.
- 5. Доверительные границы случайной составляющей относительной погрешности генератора $\delta B'_{\Delta t}$ и $\delta B''_{\Delta t}$ рассчитаны для случая, когда $\Delta t = 0,10^{\circ}C$ и $0,05^{\circ}C$ соответственно.

Приложение 3.

Таблица значений атмосферного давления, выраженных в мм рт. ст. и кгс/см²

TO TO MM	VIC/CM ²	F FG	VIC/CM ²	VIC/CM ² MM DT CT VIC/CM ² MM DT CT VIC/CM ² MM DT CT	VTC/CM ²	5 2 2	VIC/CM ²
630	0,8565	646	0,8782	662	0,9000	678	0,9217
631	0,8579	647	0,8796	663	0,9014	629	0,9231
632	0,8592	648	0,8810	664	0,9027	089	0,9245
633	0,8606	649	0,8823	665	0,9041	681	0,9258
634	0,8619	650	0,8837	999	0,9054	682	0,9272
635	0,8633	651	0,8850	299	0,9068	683	0,9285
636	0,8646	652	0,8864	899	0,9082	684	0,9299
637	0,8660	653	0,8878	699	0,9095	685	0,9313
638	0,8674	654	0,8891	029	0,9109	989	0,9326
639	0,8687	655	0,8905	671	0,9122	687	0,9340
640	0,8701	656	0,8918	672	0,9136	688	0,9353
641	0,8714	657	0,8932	673	0,9150	689	0,9367
642	0,8728	658	0,8946	674	0,9163	069	0,9381
643	0,8741	629	0,8959	675	0,9177	691	0,9394
644	0,8755	099	0,8973	929	0,9190	692	0,9408

1,0128 1,0223 1,0114 1,0155 1,0169 1,0209 1,0264 1,0182 1,0196 Krc/CM² 0,9421 1,0087 1,0101 1,0141 1,0237 1,0250 1,0277 мм рт. ст. 693 742 743 745 746 748 749 744 747 750 755 756 751 752 753 754 KFC/CM² 0,9938 0,9965 0,9979 0,9992 1,0005 1,0019 1,0046 1,0060 0,9204 0,9870 0,9924 0,9952 1,0033 0,9884 0,9897 0,9911 мм рт. ст. 728 728 729 730 733 735 736 738 739 727 732 734 740 677 737 731 KFC/CM² 0,8986 0,9666 0,9775 0,9802 0,9816 0,9829 0,9653 0,9680 0,9720 0,9748 0,9788 0,9894 0,9734 0,9707 0,9761 мм рт. ст. 715 716 710 717 718 719 722 723 712 713 714 720 724 711 721 661 Продолжение приложения 3. Krc/cm² 0,8769 0,9435 0,9449 0,9476 0,9585 0,9612 0,9462 0,9489 0,9503 0,9517 0,9530 0,9598 0,9544 0,9557 0,9571 0,9625 мм рт. ст. 645 695 702 705 694 969 869 669 700 703 704 902 708 701 707 697

Продолжение приложения 3.

мм рт. ст.	Krc/cm²	мм рт. ст.	KIC/CM ²	мм рт. ст.	Krc/cm ²
	99000				
725	0,9000	741	1,0073	757	1,0291
270	1,0468	782	1,0631	794	1,0794
777	1,0481	783	1,0644	795	1,0808
772	1,0495	784	1,0658	962	1,0831
773	1,0509	785	1,0672	797	1,0835
774	1,0522	786	1,0685	798	1,0848
775	1,0536	787	1,0699	799	1,0862
922	1,0549	788	1,0712	800	1,0876
777	1,0563	789	1,0726	801	1,0889
778	1,0576	790	1,0740	802	1,0903
779	1,0590	791	1,0753	803	1,0916
780	1,0604	792	1,0767	804	1,0930
781	1,0617	793	1,0780	805	1,0944
	774 775 777 777 778 780 781		1,0522 1,0536 1,0563 1,0563 1,0604 1,0604 1,0617	1,0522 786 1,0536 787 1,0549 788 1,0563 789 1,0576 790 1,0690 791 1,0604 792 1,0617 793	1,0522 786 1,0685 1,0536 787 1,0699 1,0549 788 1,0712 1,0563 789 1,0740 1,0590 791 1,0753 1,0604 792 1,0767 1,0617 793 1,0780

Примечание: 2,1 бар = 1,01972 кгс/см² = 750,062 мм рт. ст.

Приложение 4.

Значение коэффициента Z в зависимости от температуры и абсолютного давления газа (азот, воздух)

Абсолютное					Температура,	тура, °С				
давление, бар	0	10	20	30	40	50	09	20	80	06
0,25	1,00131	1,00148	1,00173	1,00202	1,00223	1,00211	1,00111			
0,50	1,00217	1,00229	1,00251	1,00284	1,00323	1,00358	1,00362	1,00288	1,00051	
1,00	1,0039	1,00388	1,00400	1,00426	1,00467	1,00519	1,00571	1,00599	1,00561	1,00394
1,50	1,0056	1,0055	1,00547	1,00564	1,00599	1,00651	1,00713	1,00772	1,00801	1,00754
2,00	1,0074	1,0071	1,0069	1,00701	1,00728	1,00775	1,00839	1,00910	1,00968	1,00980
2,50	1,0091	1,0087	1,0084	1,0084	1,0086	1,0090	1,00959	1,01034	1,0108	1,01154
3,00	1,0108	1,0103	1,0099	1,0097	1,0098	1,0102	1,0108	1,01151	1,01234	1,01300
3,50	1,0126	1,0119	1,0114	1,0111	1,0111	1,0114	1,0119	1,0125	1,01351	1,01432
4,00	1,0144	1,0135	1,028	1,0125	1,0124	1,0126	1,0130	1,0138	1,0146	1,01553
4,50	1,0161	1,0151	1,0143	1,0138	1,0136	1,0138	1,0142	1,0149	1,0157	1,0167
5,00	1,0179	1,0167	1,0158	1,0152	1,0149	1,0150	1,0153	1,0159	1,0168	1,0178
10,0	1,0356	1,0330	1,0308	1,0290	1,0277	1,0269	1,0265	1,0266	1,0271	1,0280
20,0	1,072	1,066	1,0615	1,0573	1,0539	1,0512	1,0493	1,0490	1,0474	1,0474

72

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Изм.	Номера листов (страниц)				Всего	Nº	Входя- щий		
	нен- ных	заме- нен- ных	но- вых	изъя- тых	листов (страниц) в докум.	До- кум.	№ сопров. докум. и дата	Под- пись	Дата
						,			