

термопреобразователи сопротивления **ВЗЛЕТ ТПС**

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

B65.00-00.00 P3

Россия, Санкт-Петербург

Система менеджмента качества ЗАО «ВЗЛЕТ» соответствует требованиям ГОСТ Р ИСО 9001-2008 (сертификат соответствия № РОСС RU.ИС09.К00816) и международному стандарту ISO 9001:2008 (сертификат соответствия № RU-00816)

ЗАО «ВЗЛЕТ»

ул. Мастерская, 9, г. Санкт-Петербург, РОССИЯ, 190121 факс (812) 714-71-38 E-mail: mail@vzljot.ru

www.vzljot.ru

•	отдел информации	тел. (812) 714-81-23 тел. (812) 714-81-02
•	консультации по применению приборов и оборудования	тел. (812) 714-81-78 тел. (812) 714-81-28
•	консультации по вопросам эксплуатации приборов	тел. (812) 714-81-00
•	консультации по организации сервисного обслуживания и работе сервисных центров	тел. (812) 714-81-56

Головной сервисный центр ЗАО «ВЗЛЕТ» OOO «TEXCEPBIC»

ул. Трефолева, д. 4, корп.1, лит. Б, г. Санкт-Петербург, РОССИЯ, 198078

• поверка, гарантийный и послегарантийный ремонт приборов

тел. (812) 380-84-41 факс (812) 714-81-07

E-mail: ero@vzljot.ru

* * *

Учебный центр ЗАО «ВЗЛЕТ» проводит бесплатное обучение специалистов по вопросам монтажа и эксплуатации выпускаемых приборов тел. (812) 495-42-89 факс (812) 714-25-87

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. ОПИСАНИЕ И РАБОТА	
1.1. Назначение	5
1.2. Технические характеристики	5
1.3. Состав	
1.4. Устройство и работа	7
1.5. Маркировка	
2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	
3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	g
3.1. Проверка технического состояния	g
3.2. Методика поверки	10
4. УПАКОВКА, ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	16
ПРИЛОЖЕНИЕ А. Вид термопреобразователя «ВЗЛЕТ ТПС»	17
ПРИЛОЖЕНИЕ Б. Монтаж термопреобразователя «ВЗЛЕТ ТПС» на	
трубопроводе	18
ПРИЛОЖЕНИЕ В. Протокол поверки	20

Настоящий документ распространяется на термопреобразователи сопротивления «ВЗЛЕТ ТПС» (далее – ТПС) и предназначен для ознакомления с их устройством и порядком эксплуатации.

В связи с постоянной работой над усовершенствованием изделия возможны отличия от настоящего руководства, не влияющие на метрологические характеристики и функциональные возможности.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

ТПС - термопреобразователи сопротивления;

НСХ - номинальная статическая характеристика преобразования;

СЦ - сервисный центр.

* * *

- Термопреобразователь сопротивления «ВЗЛЕТ ТПС» зарегистрирован в Государственном реестре средств измерений РФ под № 21278-06 (сертификат об утверждении типа средств измерений RU.C.32.006.A № 24510).
- ◆ Термопреобразователь сопротивления «ВЗЛЕТ ТПС» разрешен к применению на производственных объектах в соответствии с правилами промышленной безопасности.

Удостоверяющие документы размещены на сайте www.vzljot.ru

1. ОПИСАНИЕ И РАБОТА

1.1. Назначение

Термопреобразователи сопротивления «ВЗЛЕТ ТПС» предназначены для измерения температуры и разности температур путем погружения в жидкую, газообразную или сыпучую среду и могут применяться в теплоэнергетике, химической, пищевой и других отраслях промышленности.

ТПС могут использоваться в составе теплосчетчиков, измерительных систем, автоматизированных систем управления технологическими процессами и т.д.

1.2. Технические характеристики

1.2.1. Основные технические характеристики приведены в табл. 1.

Таблица 1

Наименование параметра	Значение	Примеч.
1. Номинальная статическая характери-		
стика преобразования (НСХ)	500Π(Pt500) /100Π(Pt100)	НСХ по заказу
2. Номинальное значение W ₁₀₀	1,3850	-
3. Диапазон измеряемых температур, °С	от 0 до 180	
	от минус 50 до 100	Одиночные по заказу
4. Диапазон измеряемых разностей		
температур, °С	от 3 до 180	
5. Пределы допускаемой абсолютной		
погрешности измерения температуры		
одиночным преобразователем, °C:	, ,	t — измеряемое
- класс допуска А одиночного ТПС	± (0,15+0,002· t)	значение
- класс допуска В одиночного ТПС	± (0,3+0,005· t)	температуры, °С
6. Пределы допускаемой абсолютной		
погрешности измерения разности		
температур согласованной парой		
TΠC, °C:		Δt — измеряемое
- класс 1 согласованной пары ТПС	$\pm (0,05+0,001 \cdot \Delta t)$	значение разности
- класс 2 согласованной пары ТПС	± (0,10+0,002· ∆t)	температур, °С
7. Схема соединения чувствительного		
элемента	4-проводная	
8. Номинальный / максимальный рабо-	0,2 / 1,0	При НСХ 500П (Pt500)
чий ток, мА	1,0 / 5,0	При НСХ 100П (Pt100)
9. Максимальное рабочее давление для		
ТПС в защитной гильзе, МПа	2,5	
10. Показатель тепловой инерции, с	не более 10	
11. Средняя наработка на отказ, ч	100 000	
12. Средний срок службы, лет	12	

- 1.2.2. ТПС соответствуют требованиям ГОСТ 12997 по устойчивости:
 - к механическим воздействиям группе N3;
 - к климатическим воздействиям группе Д3 (температура окружающего воздуха от минус 50 до 50 °C, влажность до 95 % при температуре не более 35 °C, без конденсации влаги);
 - к атмосферному давлению группе Р2.
 - Исполнение прибора соответствует степени защиты IP65 по ГОСТ 14254.
- 1.2.3. Конструктивно ТПС изготавливаются с монтажной коробкой, которая может быть выполнена из пластмассы или силумина. Внешний вид и массогабаритные характеристики приведены в Приложении А.

1.3. Состав

Комплект поставки изделия приведен в табл.2.

Таблица 2

Наименование и условные обозначения	Кол-во	Прим.
1. Термопреобразователь сопротивления «ВЗЛЕТ ТПС»	1 компл.	Примечание 1
2. Гильза защитная	1 компл.	Примечание 2
3. Штуцер	1 компл.	Примечание 2,3
4. Комплект монтажных частей	1 компл.	Примечание 2
5. Паспорт	1	
6. Руководство по эксплуатации	1	

ПРИМЕЧАНИЯ.

- 1. Комплект может включать согласованную пару или одиночный ТПС.
- 2. Количество входящих определяется составом комплекта ТПС.
- 3. Вид штуцера: прямой или наклонный по заказу.

1.4. Устройство и работа

Принцип действия ТПС основан на использовании зависимости электрического сопротивления материала чувствительного элемента от температуры. Резистор чувствительного элемента выполнен напылением или в виде спирали из платиновой проволоки и помещен в защитную оболочку. Выводы резистора подключены попарно к четырем проводникам. Схема соединений ТПС представлена на рис.1.

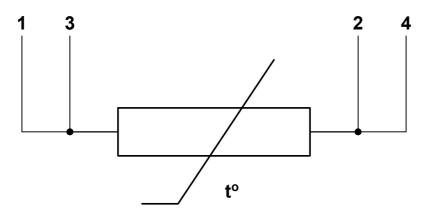


Рис. 1. Схема соединений ТПС.

1.5. Маркировка

Маркировка термопреобразователя сопротивления «ВЗЛЕТ ТПС» содержит:

- товарный знак предприятия изготовителя;
- знак утверждения типа;
- условное обозначение типа изделия;
- заводской номер, а также порядковый номер в комплекте согласованной пары для ТПС, имеющих одинаковые заводские номера;
- условное обозначение НСХ;
- класс согласованной пары для ТПС из состава согласованной пары или класс допуска для одиночного ТПС;
- номинальное значение W₁₀₀;
- обозначение схемы соединений;
- диапазон измеряемых температур.

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 2.1. Эксплуатация ТПС должна производиться в условиях воздействующих факторов, не превышающих допустимых значений, оговоренных в п.1.2.2.
- 2.2. Монтаж ТПС и подготовка к эксплуатации должны осуществляться в соответствии с настоящим руководством и эксплуатационной документацией на прибор, в комплекте с которым используются ТПС.

Варианты монтажа ТПС на трубопроводе, а также вид поставляемых штуцеров, привариваемых на трубопровод, приведены в Приложении Б.

Минимальная глубина погружения термопреобразователей «ВЗЛЕТ ТПС» составляет 30 мм.

2.3. Скорость потока теплоносителя в местах установки ТПС с применением защитных гильз, поставляемых по заказу, не должна превышать 4 м/с.

Вид и размеры гильз, поставляемых по заказу, приведены в Приложении Б.

Для монтажа ТПС на трубопроводе с повышенной вибрацией или пульсацией потока могут поставляться усиленные гильзы.

Для измерения температуры окружающего воздуха допускается использовать ТПС без защитной гильзы.

2.4. После завершения монтажа крышка монтажной коробки ТПС пломбируется, а трубопровод в месте установки ТПС и узел крепления ТПС необходимо теплоизолировать (рис.Б.1).

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1. Проверка технического состояния

- 3.1.1. Введенный в эксплуатацию ТПС рекомендуется подвергать периодическому осмотру с целью контроля:
 - работоспособности термопреобразователя в составе изделия;
 - соблюдения условий эксплуатации термопреобразователя;
 - отсутствия внешних повреждений;
 - надежности электрических и механических соединений.

Периодичность осмотра зависит от условий эксплуатации. Как правило, она определяется периодичностью осмотра изделия, в состав которого входит ТПС.

- 3.1.2. Несоблюдение условий эксплуатации термопреобразователей в соответствии с разделом 1.2.2, а также внешние повреждения термопреобразователя могут вызвать отказ прибора либо увеличение погрешности измерения. При появлении внешнего повреждения изделия или кабеля связи необходимо обратиться в сервисный центр (региональное представительство) или к изготовителю изделия для определения возможности его дальнейшей эксплуатации.
- 3.1.3. В случае необходимости замены одного ТПС из согласованной пары необходимо заменить согласованную пару целиком.
- 3.1.4. Отправка изделия для проведения поверки либо ремонта должна производиться с паспортом.

В сопроводительных документах необходимо указывать почтовые реквизиты, телефон и факс отправителя, а также способ и адрес обратной доставки.

3.2. Методика поверки

Методика поверки термопреобразователей сопротивления «ВЗЛЕТ ТПС» утверждена ГЦИ СИ ВНИИР. Межповерочный интервал – 4 года.

Термопреобразователи сопротивления «ВЗЛЕТ ТПС» проходят первичную поверку при выпуске из производства и после ремонта, периодические – в процессе эксплуатации.

3.2.1. Операции поверки

При проведении поверки необходимо выполнить операции, приведенные в табл.3.

Таблица 3

Наименование операции	Номер пункта методики
Внешний осмотр	3.2.7.1
Опробование	3.2.7.2
Проверка электрического сопротивления изоляции	3.2.7.3
Определение значений сопротивления при 0 °C и при температуре	
кипения воды	3.2.7.4
Определение метрологических характеристик одиночного термо-	
преобразователя сопротивления	3.2.7.5
Определение метрологических характеристик согласованной пары*	3.2.7.6

^{* -} проводится только для согласованных пар термопреобразователей сопротивления

Результаты поверки заносятся в протокол. Рекомендуемая форма протокола приведена в Приложении В.

3.2.2. Средства поверки

При проведении поверки должны применяться средства поверки, приведенные в табл. 4.

Таблица 4

Номер пункта	Наименование средств поверки и их нормативно-технические характеристики			
2.2.7.0				
3.2.7.2	Омметр, класс точности 1,5.			
3.2.7.3	Мегаомметр Ф4101, диапазон измерения от 100 до 2000 МОм,			
напряжение 100 В, класс точности 2,5.				
3.2.7.4-3.2.7.6	Вольтметр В7-54/3, относительная погрешность в диапазоне измерения от 0 до 1 В 0,004 %.			
	Термометр сопротивления эталонный 3-го разряда ЭТС-100, диапазон измерения от 0 до 400 °C.			
	Однозначные меры электрического сопротивления МР 3000 группы Б, нестабильность не более 0,001 % за год.			
	Вспомогательное оборудование:			
	- термостат паровой ТП-1М для воспроизведения температур			
	кипения воды с погрешностью не более \pm 0,03 °C.			
	- термостат нулевой ТН-1М, объем льда из расчета 0,005 м ³ на			
	один термопреобразователь с погрешностью воспроизведения			
	температуры плавления льда не более ± 0,02 °C.			

ПРИМЕЧАНИЕ. Допускается применение другого оборудования, приборов и устройств с метрологическими характеристиками, не уступающими характеристикам средств измерения и вспомогательного оборудования, приведенным в данной таблице. При отсутствии указанных приборов, в исключительных случаях, по согласованию с ФГУ ЦСМ Ростехрегулирования, выполняющего поверку, допускается применение приборов и оборудования с характеристиками, достаточными для получения достоверного результата поверки.

3.2.3. Требования к квалификации поверителей

К проведению поверки допускаются лица, аттестованные в качестве поверителя, изучившие эксплуатационную документацию на ТПС и средства их поверки, имеющие опыт поверки средств измерений температуры, а также прошедшие инструктаж по технике безопасности в установленном порядке.

3.2.4. Требования безопасности

При проведении поверки должны соблюдаться «Правила технической эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок», утвержденные Госэнергонадзором, и требования, установленные ГОСТ 12.2.007.0.

3.2.5. Условия проведения поверки

- 3.2.5.1. При проведении поверки должны соблюдаться следующие условия:
 - температура окружающего воздуха 20 ± 5 °C;
 - относительная влажность окружающего воздуха от 30 до 80 %;
 - атмосферное давление от 84,0 до 106,7 кПа.
- 3.2.5.2. Все применяемые средства измерений должны иметь действующие свидетельства или отметки о поверке.

3.2.6. Подготовка к проведению поверки

Поверка проводится после подготовки измерительного оборудования и изделий в соответствии с требованиями эксплуатационной документации и п.3 ГОСТ 8.461-82.

3.2.7. Проведение поверки

3.2.7.1. Внешний осмотр

При внешнем осмотре должно быть установлено соответствие поверяемого термопреобразователя сопротивления следующим требованиям:

- защитная арматура, контактные колодки и выводные проводники термопреобразователя сопротивления не должны иметь видимых повреждений;
- резьба на штуцерах термопреобразователя сопротивления не должна иметь повреждений;
- маркировка должна быть четкой.

При нарушении приведенных выше требований термопреобразователи сопротивления к поверке не допускаются.

3.2.7.2. Опробование

Омметром измеряется сопротивление каждого термопреобразователя сопротивления между выходными контактами 1 (3) и 2 (4). Показания омметра должны быть в пределах 550 \pm 50 Ом для ТПС с HCX 500П (Pt500) и 110 \pm 10 Ом для ТПС с HCX 100П (Pt100), что свидетельствует о целостности электрических цепей ТПС.

3.2.7.3. Проверка электрического сопротивления изоляции проводится по ГОСТ 6651-94.

Мегаомметром измеряется электрическое сопротивление между выходными контактами термопреобразователя сопротивления и металлической частью его защитной арматуры при испытательном напряжении 100 В постоянного тока. Электрическое сопротивление изоляции каждого термопреобразователя сопротивления не должно быть менее 100 МОм.

- 3.2.7.4. Определение значений сопротивления ТПС при 0 °С и при температуре кипения воды
- 3.2.7.4.1. Определение значений сопротивления ТПС при 0 °С проводится по ГОСТ 8.461-82.

Для проведения измерений ТПС помещается в камеру нулевого термостата. Определение сопротивления ТПС при температуре плавления льда выполняется после установления состояния теплового равновесия между ТПС и термостатирующей средой термостата. Время выдержки ТПС с защитной арматурой должно быть не менее 30 мин, без защитной арматуры – не менее 15 мин.

3.2.7.4.2. Определение значений сопротивления ТПС при температуре кипения воды проводится по ГОСТ 8.461-82.

Для проведения измерений ТПС помещается в паровой термостат. Определение сопротивления ТПС при температуре кипения воды выполняется после установления состояния теплового равновесия между ТПС и насыщенными парами кипящей воды. Температура кипения воды должна контролироваться эталонным термометром. Время выдержки ТПС с защитной арматурой должно быть не менее 30 мин, без защитной арматуры – не менее 20 мин.

3.2.7.4.3. Серии измерений сопротивления ТПС при 0°С и при температуре кипения воды должны содержать не менее четырех отсчетов. Значение измеряемого сопротивления определяется по формуле:

$$R = \frac{\sum_{i=1}^{n} R_i}{n},$$

где n – число отсчетов;

R_i – измеренное значение сопротивления ТПС при i-ом отсчете.

- 3.2.7.5. Определение метрологических характеристик одиночного термопреобразователя сопротивления
- 3.2.7.5.1. Отклонение сопротивления δR_0 от номинального значения при температуре 0 °C в процентах определяют по формуле:

$$\delta R_0 = \frac{R_{0_{\text{N3M}}} - R_0}{R_0} \cdot 100\% \,,$$

где $R_{0uзм}$ — сопротивление поверяемого ТПС при температуре 0 °C, Ом;

 R_0 – номинальное значение сопротивления по ГОСТ 6651-94 при температуре 0 °C, Ом.

Отклонение сопротивления δR_0 от номинального значения должно быть в пределах \pm 0,05 % для одиночного преобразователя класса допуска A и \pm 0,10 % для одиночного преобразователя класса допуска B.

3.2.7.5.2. Определение W_{100} проводится по ГОСТ 8.461-82.

При этом вычисляют отношение сопротивлений W_{100} по формуле:

$$W_{100} = \frac{R_{100}}{R_{0u3M}},$$

где R_{100} = $R_{\text{кип}}$ + ΔR — значение сопротивления ТПС, приведенное к температуре 100°C;

R_{кип} — значение сопротивления ТПС при температуре кипения воды при проведении испытаний по п.3.2.7.4.2;

 ΔR – поправка, учитывающая отличие температуры кипения воды при проведении измерений по п.3.2.7.4.2 от 100°C и рассчитанная согласно п.6.2.6 ГОСТ 8.461-82.

Полученное значение W_{100} должно быть не менее 1,3845 для одиночного преобразователя класса допуска A и 1,3840 для одиночного преобразователя класса допуска B.

3.2.7.5.3. Определение абсолютной погрешности измерения температуры

Абсолютная погрешность измерения температуры Δ_t определяется по формуле:

$$\Delta_t = \frac{1}{n} \sum_{i=1}^{n} (t_{\text{M3M}} - t_{\text{yCT}}),$$

где n – число отсчетов (не менее 4 - x);

 $t_{\mbox{\tiny ИЗЗМ}}$ — значение температуры, определяемое по сопротивлению испытуемого термопреобразователя по ГОСТ 6651-94, °C;

 $t_{\text{уст}}$ – температура в рабочей камере термостата, определяемая эталонными средствами измерений, °C.

Измерения проводятся для значений $t_{\text{уст}}$, равных 0 °C и температуре кипения воды.

Значение Δ_t не должно превышать предел, указанный в п.5 таблицы 1 для термопреобразователей данного класса допуска.

3.2.7.6. Определение метрологических характеристик согласованной пары.

Проверяется соответствие испытуемой пары ТПС, составленной из одиночных ТПС не хуже класса В, следующим требованиям:

- а) разность значений сопротивления R_{0 изм согласованной пары ТПС $(\Delta R_{0$ cn}) не должна превышать допустимого отклонения:
 - $\pm 0,075$ Ом для согласованной пары класса 1 из одиночных ТПС с HCX 500П (Pt500);
 - $\pm 0,015$ Ом для согласованной пары класса 1 из одиночных ТПС с HCX 100П (Pt100);
 - $\pm 0,15$ Ом для согласованной пары класса 2 из одиночных ТПС с HCX 500П (Pt500);

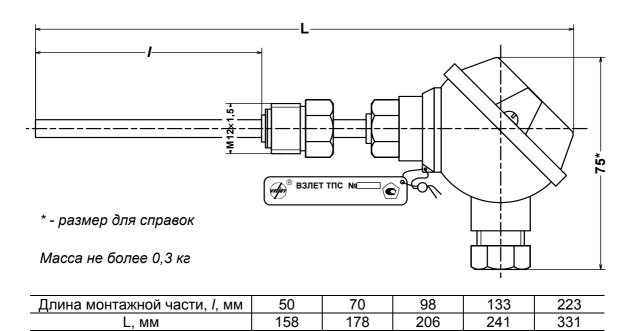
- $\pm 0,03$ Ом для согласованной пары класса 2 из одиночных ТПС с HCX 100П (Pt100);
- б) разность W_{100} пары термопреобразователей не должна превышать величины допускаемого отклонения \pm 0,0001 для согласованной пары класса 1 и \pm 0,0002 для согласованной пары класса 2.

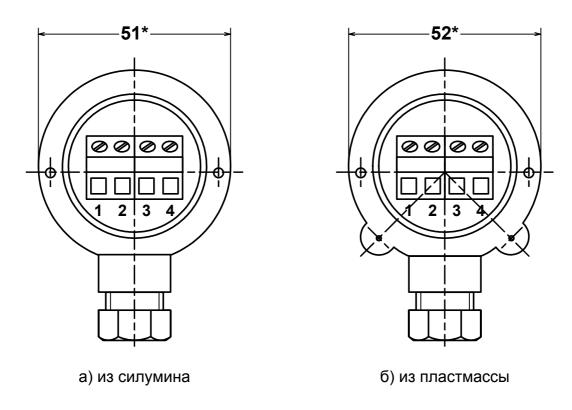
3.2.8. Оформление результатов поверки

- 3.2.8.1. Положительные результаты поверки оформляются свидетельством о поверке или записью в паспорте ТПС, заверенной подписью поверителя с нанесением поверительного клейма. ТПС допускаются к эксплуатации с нормированной погрешностью.
- 3.2.8.2. В случае отрицательных результатов первичной поверки ТПС возвращаются в производство на доработку, после чего подлежат повторной поверке.
- 3.2.8.3. Если характеристики одиночного ТПС класса допуска А по результатам периодической поверки не соответствуют классу допуска А, но соответствуют классу допуска В, допускается оформление свидетельства о поверке одиночного ТПС на соответствие классу допуска В.
- 3.2.8.4. Если характеристики комплекта ТПС класса 1 по результатам периодической поверки не соответствуют классу 1, но соответствуют классу 2, допускается оформление свидетельства о поверке комплекта ТПС на соответствие классу 2.
- 3.2.8.5. При отрицательных результатах периодической поверки ТПС к применению не допускаются, в их паспорте производится запись о непригодности ТПС к эксплуатации, а клеймо гасится.

4. УПАКОВКА, ХРАНЕНИЕ И ТРАНСПОРТИРО-ВАНИЕ

4.1. Термопреобразователи сопротивления, укомплектованные в соответствии с таблицей 2, упаковываются в индивидуальную тару категории КУ-2 по ГОСТ 23170 (коробка из гофрированного картона). Туда же помещается и компакт-диск с эксплуатационной документацией.

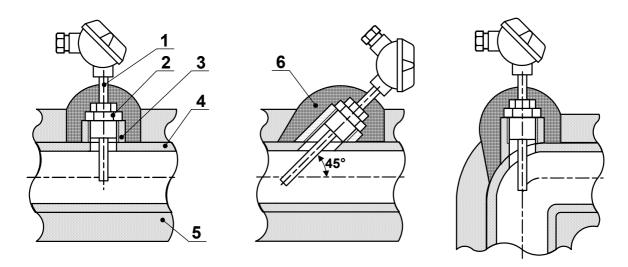

Маркировка упакованных ТПС производится в соответствии с ГОСТ 14192.


4.2. ТПС должны храниться в сухом отапливаемом помещении в соответствии с условиями хранения 1 согласно ГОСТ 15150. В помещении для хранения не должно быть токопроводящей пыли, паров кислот, щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию.

ТПС не требуют специального технического обслуживания при хранении.

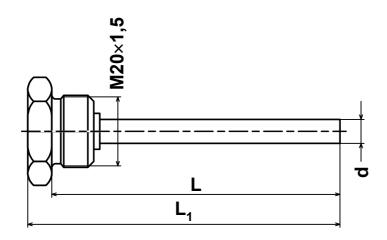
- 4.3. Упакованные ТПС могут транспортироваться любым видом закрытого транспорта, за исключением морского и негерметизированных отсеков самолетов, при соблюдении следующих условий:
 - транспортировка осуществляется в заводской таре;
 - отсутствует прямое воздействие влаги;
 - температура не выходит за пределы от минус 30 до 50 °C;
 - влажность не превышает 98 % при температуре до 35 °C;
 - вибрация в диапазоне от 10 до 500 Гц с амплитудой до 0,35 мм или ускорением до 49 м/с 2 ;
 - удары со значением пикового ускорения до 98 м/c²;
 - уложенные в транспорте изделия закреплены во избежание падения и соударений.

ПРИЛОЖЕНИЕ А. Вид термопреобразователя «ВЗЛЕТ ТПС»



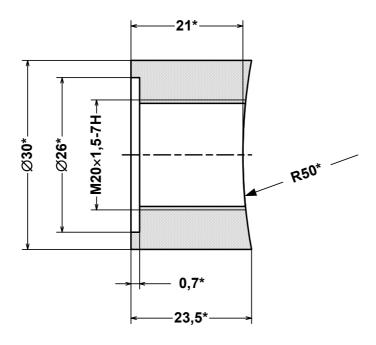
Вид на монтажную коробку (без крышки).

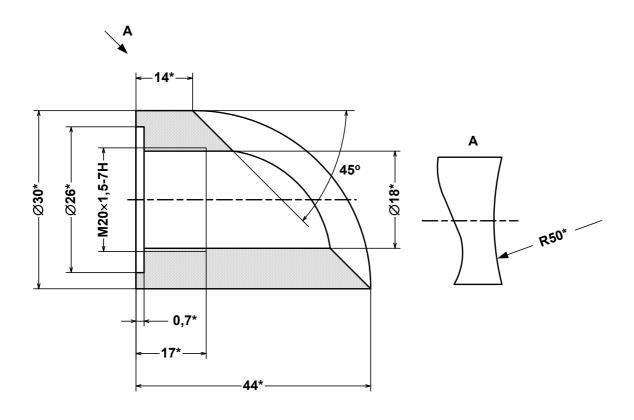
Рис. А.1. Внешний вид и массогабаритные характеристики ТПС с монтажной коробкой.


^{* -} справочный размер

ПРИЛОЖЕНИЕ Б. Монтаж термопреобразователя «ВЗЛЕТ ТПС» на трубопроводе

- 1 термопреобразователь сопротивления; 2 защитная гильза;
- 3 штуцер; 4 трубопровод; 5 теплоизоляция трубопровода;
- 6 теплоизоляция ТПС.


Рис. Б.1. Варианты монтажа ТПС на трубопроводе.


Длина монтажной части гильзы, L, мм	57	77	105	140	230
L ₁ , MM	64	84	112	147	237
d, mm	8/10*	8/10*	8/10*	8/10*	10
Длина монтажной части ТПС, /, мм	50	70	98	133	223

^{* -} усиленная гильза

Рис. Б.2. Защитная гильза.

а) прямой

б) наклонный

* - справочный размер

Рис. Б.3. Штуцеры для монтажа ТПС на трубопроводе.

ПРИЛОЖЕНИЕ В. Протокол поверки

(рекомендуемое)

		ПРОТОКОЛ №			
	первичной (периодической) поверки				
	термопреобр	разователей сопротивл	ения «ВЗЛЕТ ТПС»		
	Заводские номера				
	Обозначение НСХ				
	Номинальное значен	ие W ₁₀₀ = 1,3850			
		РЕЗУЛЬТАТЫ ПОВЕ	РКИ		
	Внешний осмотр				
Nº	Наименование	Значение характеристики			
п/п	характеристики	полученное при поверке	требуемое		
		1	•		
	V				
		К ЭКСПЛ у годен, не годен	/атации		
	Дата поверки	•			
	Дата повории				
	Поверитель	подпись			
		подпись	ф. и. о.		

re.e_tps_2.doc6